West Yamba Urban Release Area

Traffic Impact Assessment

Mortons Urban Solutions

8 May 2023

Gold Coast

Suite 26, 58 Riverwalk Avenue Robina QLD 4226 P: (07) 5562 5377

W: www.bitziosconsulting.com.au

Brisbane

Level 2, 428 Upper Edward Street Spring Hill QLD 4000 P: (07) 3831 4442

E: admin@bitziosconsulting.com.au

Sydney

Studio 203, 3 Gladstone Street Newtown NSW 2042 P: (02) 9557 6202

Copyright in the information and data in this document is the property of Bitzios Consulting. This document and its information and data is for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or in part for any purpose other than for which it was supplied by Bitzios Consulting. Bitzios Consulting makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or its information and data.

Document Issue History

Report File Name	Prepared	Reviewed	Issued	Date	Issued to
P5746.001R Wyura Subdivision TIA - DRAFT	L.Daniels / A. Payne	B. James	A. Payne	17/08/2022	John Harrison johnh@urbansolutions.net.au
P5746.001R Wyura Subdivision TIA	L.Daniels / A. Payne	B. James	A. Payne	19/08/2022	John Harrison johnh@urbansolutions.net.au
P5746.002R Wyura Subdivision TIA	Sai Girish. M / A. Payne	B. James	A. Payne	19/12/2022	John Harrison johnh@urbansolutions.net.au
P5746.003R Wyura Subdivision TIA	A. Payne	B. James	A. Payne	08/05/2022	John Harrison johnh@urbansolutions.net.au

CONTENTS

		Page
Addi	ENDUM: IR RESPONSE COVER LETTER	1
1.	Introduction	3
1.1	Background	3
1.2	Scope	3
1.3	Information Request	4
1.3.1	Overview	4
1.3.2	Information Request Response Summary - Transport Movement Hierarchy and Road Network Design and Provision	4
2.	EXISTING CONDITIONS	7
2.1	Planning Context	7
2.1.1	West Yamba Urban Release Area	7
2.1.2	Adjacent Developments	7
2.2	Existing Road Network	8
2.3	Alternate Transport	9
3.	DEVELOPMENT DETAILS	10
3.1	Proposed Development	10
4.	EXTERNAL TRAFFIC ASSESSMENT	11
4.1	Surveyed Traffic	11
4.1.1	Traffic Surveys	11
4.1.2	Traffic Growth	11
4.1.3	Seasonality	11
4.2	Adjacent Development Traffic	12
4.2.1	Adjacent Site Traffic Generation	12
4.2.2	Adjacent Site Trip Distribution	13
4.3	Background Traffic	13
4.4	Proposed Development Traffic	13
4.4.1	Proposed Development Traffic Generation	13
4.4.2	Proposed Development Trip Distribution	14
4.5	Design Traffic	15
4.6	SIDRA Assessment	15
4.6.1	Methodology	15
4.6.2	Yamba Road / Treelands Drive	16
	Yamba Road / Carrs Drive	17
	Yamba Road / Shores Drive	19
4.6.5	Yamba Road / Golding Street	20
4.7	SIDRA Results Summary	21
4.8	Road Infrastructure Upgrades	21
4.8.1	Golding Street Connection Trigger Points	21
4.8.2 =	Golding Street Connection via Deering Street	22 25
5.	INTERNAL TRAFFIC ASSESSMENT	25
5.1	Overview Traffia Valures a	25
5.2	Traffic Volumes	25
5.3 6.	Turn Warrants Assessment ACCESS & ROAD CAPACITY ASSESSMENT	25 28
O.	ALLESS OF TUAL GAPACITY ASSESSMENT	Z A

6.1	Road Hierarchy	28
6.1.1	Northern Rivers Road Cross-Sections	28
6.1.2	WYURA Network Planning	28
6.1.3	Proposed Cross-Sections	30
6.2	Heavy Vehicle Access	30
6.2.1	Construction Traffic	30
6.2.2	Service Vehicle Access	31
7.	ALTERNATE TRANSPORT PROVISIONS	32
7.1	Public Transport	32
7.2	Active Transport Provision	32
8.	SUMMARY AND CONCLUSIONS	33

Tables

- Table 2.1: Surrounding Road Network
- Table 2.2: Key Intersections
- Table 4.1: Adjacent Development Traffic GenerationTable 4.2: Adjacent Development Traffic DirectionalityTable 4.3: Proposed Development Traffic Generation
- Table 4.4: Development Trip Directionality
- Table 4.5: Development Trip Distribution With Golding Street Connection
- Table 4.6: Yamba Road / Treelands Drive SIDRA Results Summary
- Table 4.7: Yamba Road / Carrs Drive SIDRA Results SummaryTable 4.8: Yamba Road / Shores Drive SIDRA Results SummaryTable 4.9: Yamba Road / Golding Street SIDRA Results Summary
- Table 4.10: SIDRA Results Summary Yamba Road / Carrs Drive 2033 Development Thresholds
- Table 6.1: Northern Rivers Design Manual Road Cross-Section Details
- Table 6.2: Proposed Road Cross-Sections

Figures

- Figure 1.1: Subject Site Location
- Figure 2.1: West Yamba Urban Release Area
- Figure 2.2: Recognised Development Applications
- Figure 3.1: Proposed Development
- Figure 4.1: Pacific Highway Seasonal Traffic Volumes
- Figure 4.2: Yamba Road / Treelands Drive SIDRA Intersection Layout
- Figure 4.3: Yamba Road / Carrs Drive SIDRA Intersection Layout
- Figure 4.4: Yamba Road / Shores Drive SIDRA Intersection Layout
- Figure 4.5: Yamba Road / Golding Street SIDRA Intersection Layout
- Figure 4.6: Yamba Urban Bypass Plan
- Figure 4.7: Yamba Urban Bypass Deering Street Connection
- Figure 5.1: Carrs Drive / Miles Street Turn Warrants Assessment
- Figure 5.2: Carrs Drive / Proposed Collector Road Turn Warrants Assessment
- Figure 5.3: BAR Treatment Design
- Figure 6.1: Northern Rivers Road Hierarchy Applicable Uses
- Figure 6.2: WYURA Road Hierarchy Function

Appendices

Appendix A: Development Plans Appendix B: Traffic Survey Data Appendix C: Network Diagrams Appendix D: SIDRA Outputs

Appendix E: Carrs Drive / Miles Street Traffic Volumes

ADDENDUM: IR RESPONSE COVER LETTER

This letter has been prepared in response to the Information Request (IR) issued by Clarence Valley Council (Council) dated 3rd March 2023 in relation to the proposed subdivision located within the West Yamba Urban Release Area (SUB2023/0001).

Specifically, this letter response to Transport Items 15-18 and 20-21.

Ref.	IR Item	Response Summary	Section
Trans	sport Assessment		-
15	The Traffic Impact Assessment (TIA) states that the Yamba Road/Carrs Drive intersection cannot cater for ultimate WYURA traffic volumes if it is the only vehicular access point to the WYURA. Section 4.8.1 states that the Golding Street connection to the WYURA is required based on two maximum thresholds. Further information is required to determine at which stage the Golding Street connection is required for this development.	Development thresholds at which the Golding Street connection are required are identified in Section 4.8.1	Section 4.8.1
16	The applicant is requested to provide information about if the proposed development stand alone without any connection to Golding Street. It is assumed that the emergency vehicle access to Golding Street via Miles Street will be required with the first stage of the development to ensure the development has two access point (albeit limited to emergency access only). How will general traffic be restricted or managed to ensure the section of road between the future Miles Street roundabout and Golding Street is not used as the primary point of access.	Details of proposed emergency access are outlined in Section 1.3.2.	Section 1.3.2
17	The traffic report indicates that the new road and intersection onto Carrs Drive will function as a Collector Road. It is unclear if an assessment of this proposed intersection has been undertaken to determine its required level of treatment. The TIA shall be revised to include an assessment of the proposed new intersection into Carrs Drive to determine the appropriate intersection treatment required. Appropriate Concept Plans of the intersection treatment are to be provided.	This traffic assessment has been revised to include assessment of the future Carrs Drive / Collector Road intersection. It has been determined that a BAR treatment is required on Carrs Drive with the intersection form as per the Carrs Drive / Miles Street intersection.	Section 5.3 Appendix E
18	Section 5.3 of the Traffic Impact Assessment recognises the requirement for a BAR treatment at the Carrs Drive/Miles Street intersection. Revised plans shall be submitted which include preliminary intersection configurations for accesses to Carrs Drive/Miles Street.	Concept plans of the proposed Carrs Drive / Miles Street intersection including a BAR treatment have been provided by MUS as a part of the Development Application	N/A

Ref.	IR Item	Response Summary	Section
20	The updated TIA provides limited details of construction traffic impacts on the surrounding road network and the connection to Yamba Road. The development application proposes a significant change in levels and is likely to generate ongoing traffic impacts during completion of civil works and road construction throughout the construction phase of the development. The applicant is requested to provide an updated TIA to include details on traffic impacts and management during the multiple construction stages of the proposed development.	Construction / haulage traffic associated with the proposed development will be a continuation of existing operations for the development of initial WYURA stages. Traffic surveys capture heavy vehicle movements to / from existing construction sites and as such, the traffic assessment undertaken considers ongoing impacts of construction traffic on the surrounding road network.	Section 4.6
21	Additional details shall be provided for the Golding Street/Yamba Road roundabout upgrade in the form of concept design plans. Plans shall indicate the extent of widening required within the road reserve and its impacts on neighbouring property boundaries (if any).	Detailed assessment of the geometric requirements of the Yamba Road / Golding Street roundabout upgrade identified that the upgrade would impact adjacent property boundaries. With consideration to this, further refinements were made to the traffic modelling. With these refinements it was determined that the Yamba Road / Golding Street intersection would only be expected to fail in the worst case 2043 AM, with seasonality factor, with development assessment scenario. By the time that this failure is forecast to occur (i.e. by 2043) it is expected that the Yamba Urban Bypass would be at least partially constructed. This bypass connection between Golding Street and Angourie Road would relieve pressure off Yamba Road and the Yamba Road / Golding Street. This connection is therefore anticipated to offset the impacts of development traffic on the Yamba Road / Golding Street intersection. As a part of the proposal, the development will provide the Golding Street / Deering Street roundabout and provide additional development contributions in accordance with Council's bypass S94 plan. The proposed development is therefore considered to contribute to the majority of the remaining bypass connection between Golding Street and Angourie Road. The proposed development is therefore considered to suitably offset development traffic impacts to the Yamba Road / Golding Street intersection without the provision of the upgrade initially identified.	Section 4.8.2

1. Introduction

1.1 Background

Bitzios Consulting (Bitzios) has been engaged by the West Yamba Landowners Consortium to prepare a Traffic Impact Assessment (TIA) for a proposed primarily residential subdivision with the West Yamba Urban Release Area (WYURA), accessed via Carrs Drive, Miles Street and Golding Street. The site location incorporates Lot 46 & 47 on DP751395, Lot 18 on DP1090409 and Lot 21 on DP1279485.

The location of the subject site is illustrated in Figure 1.1.

Source: Nearmap (edited by Bitzios)

Figure 1.1: Subject Site Location

1.2 Scope

The scope of this assessment included:

- Reviewing the existing conditions of the site and its surrounds relevant to traffic and transport
- Estimating the proposed development's traffic generation and distribution on the surrounding road network
- Detailed assessment of the development's traffic impacts on the surrounding road network
- Review the on-site road layout against Council's DCP and the Local Government (Manufactured Home Estates, Caravan Parks, Camping Grounds and Moveable Dwellings) Regulation 2021
- Review the proposed access arrangements against Council's requirements and AS2890
- Review the servicing / refuse collection arrangements Council's requirements and AS2890.

1.3 Information Request

1.3.1 Overview

A Development Application (DA) was previously submitted for a large portion of the subject site, incorporating Lot 46 & 47 DP751395 (*Application No. SUN2019/0030*). An Information Request (IR) was subsequently received from Clarence Valley Council on 28 April 2022. As such, transport related considerations of this IR are addressed as a part of this TIA report.

Transport related items and a summary of responses to these items are detailed in Section 1.3.2 below.

1.3.2 Information Request Response Summary - Transport Movement Hierarchy and Road Network Design and Provision

The justification for departure from the road hierarchy plan under C1 showing no access to Carrs Drive is not supported. Amended plans are to be submitted that show an access onto Carrs Drive that is consistent with Figure X1.2 of Part X. Similarly, emergency road access provision must be made through to Golding Street via Miles Street. This access connection must be designed in such a way that does not promote traffic movements as the preferred access to and from the development i.e. designed to accommodate minimal volumes of traffic. The road carriageway must be designed in such a way that does not inhibit the flow of water through the flood way as well as being able to maintain integrity during flood events i.e. concrete causeway.

Response:

Development plans have been amended to maintain connection to Carrs Drive through Lot 46, consistent with Figure X1.2 of Council's Residential DCP. Refer to development plans provided at **Appendix A**.

Emergency vehicle access shall be provided via Golding Street prior to the construction of the Golding Street link associated with development of the WYURA. This interim, emergency only vehicle access shall not be constructed as a typical road cross-section however shall be compliant with the minimum carriageway requirements of the NSW Government *Fire Safety Guideline: Access for Fire Brigade Vehicles and Firefighters* for a general fire appliance. Namely the following requirements shall be met:

Emergency access carriageway width:

- Generally minimum width: 4.5m wide

- Minimum width at constrained locations (i.e. culvert): 3.2m wide for a max. 50m length

Minimum inside turning circle radius:
 6.5m radius

Maximum access grade: 1.8 (12.5%) with 1:16 (6.25%) transitions.

The provided traffic impact assessments must be revised to reflect the anticipated traffic impacts based on the revised road hierarchy to reflect Figure X1.2 of Part X and incorporate the comments made above. The TIA does not consider the benefits of development traffic being able to access Yamba Road via Golding Street/future connection through Cox Street and the resulting reduction in traffic demand on Yamba Road and Miles Street between Carrs Drive and Golding Street.

Response:

Traffic assessments were undertaken as a part of this report evaluating full development of the subject site considering scenarios with only the Carrs Drive access to the WYURA and with the future connection via Golding Street. The assessment demonstrated that the Yamba Road / Carrs Drive intersection cannot cater for ultimate WYURA traffic volumes if it is the only vehicular access point to the WYURA. The Golding Street connection is required to redistribute future WYURA traffic volumes via the Yamba Road / Golding Street roundabout.

This in turn results in a reduction in traffic volumes on Yamba Road between Carrs Drive and Golding Street. Forecast traffic volumes with and without the Golding Street connection are provide at **Appendix C**. A trigger point assessment was also undertaken at Section 4.8 to determine the trigger point for this road connection based on development yield within the subject site.

It is highlighted that Yamba Road accommodates seasonal fluctuations in background traffic and will need to be accommodated within the TIA. An updated TIA is to be submitted including further modelling of forecast future traffic conditions demonstrating the development being connected to Yamba Road via both Carrs Drive and Golding Street. Such modelling must also consider sensitivity analysis for seasonal peak conditions based on survey traffic volumes for typical holiday time traffic movements. This must be demonstrated through an additional traffic volume scenario for seasonal background traffic plus applied background traffic factored up annual growth rates for traffic on Yamba Road.

Response:

Sensitivity tests were undertaken of all intersection models to assess expected impacts of seasonal fluctuations peaking during the summer periods. Based on TfNSW survey data from the permanent count site at the Clarence River, the summer peak is expected to result in approximately 11% higher traffic volumes than the July period surveyed. As such, sensitivity tests were undertaken for all intersection model years with an 11% traffic volume increase applied to all turn movements for each scenario.

Outcomes of the seasonality testing in SIDRA are outlined in Section 4.6 and detailed outputs are provided at **Appendix D**.

The updated TIA provides limited details of construction traffic impacts on the surrounding road network and the connection to Yamba Road. The development application proposes a significant change in levels and is likely to generate ongoing traffic impacts during completion of civil works and road construction throughout the construction phase of the development. The anticipated volume and frequency of construction traffic movements to and from the site must be included in the TIA as well as recommendations to reduce the impacts of construction traffic on the existing road network.

Response:

With development of adjacent sites within the WYURA currently underway, significant construction traffic volumes were surveyed with 10-15% of turns to / from Carrs Drive surveyed as heavy vehicles in the AM peak hour. As evidenced by surveys of other intersections, turning movements to primarily residential catchments would typically include 2-4% heavy vehicle movements.

This high proportion of heavy vehicle movement was carried through to future year traffic assessment scenarios to consider ongoing construction traffic impacts as development of the WYURA continues. The assessment demonstrated that key intersections would continue to operate within acceptable performance limits with expected future growth including impacts of high heavy vehicle movements.

While construction traffic is not anticipated to adversely impact intersection performance, substantial earthworks will be required and as such, earthmoving vehicles may impact local amenity during this time. As such, a number of measures are recommended to mitigate this impact as detailed in Section 6.2.1.

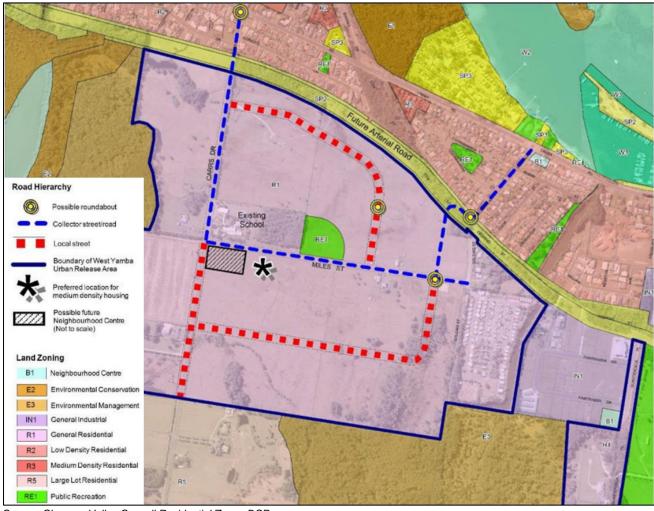
The TIA must also assess the capacity of the surrounding road network carriageway widths including Carrs Drive and Yamba Road. This must consider triggers for the provision of infrastructure and upgrades, including early staging of an eastern connection to the wider traffic network according to lot yields across the WYURA and/or development of land in proximity to the Carrs Drive and Miles Street intersection.

Response:

Roads internal to the WYURA shall be constructed in accordance with the *Northern Rivers Design Manual Section D1: Geometric Road Design (Urban and Rural)* and generally in accordance with the WYURA road hierarchy plan provided in the *Clarence Valley Council Residential Zones Development Control Plan.*

The assessment details a trigger point for the eastern (Golding Street) connection to / from the WYURA to reduce traffic volumes on Carrs Drive and portions of Yamba Road. The trigger point assessment for this Golding Street connection is detailed in Section 4.8.

Forecast traffic volumes on Yamba Road and Carrs Drive do not exceed theoretical capacity limits for these road types as specified in the Austroad Guide to Traffic Management Part 3. Furthermore, as Yamba Road functions as a sub-arterial, there is no environmental capacity limit specified in the Northern Rivers Design Manual or Council's DCP. As such, road widening, or other similar external works are not deemed warranted as a result of the proposed development.



2. Existing Conditions

2.1 Planning Context

2.1.1 West Yamba Urban Release Area

The proposed development site forms a part of the West Yamba Urban Release Area (WYURA). The WYURA is designated as a future residential urban growth area approximately 127ha in total size. With the exception of a small public recreation area, the WYURA is zoned as R1 'General Residential' for future urban development. The planned road hierarchy map of the WYURA, also illustrating WYURA location and land zoning is shown in Figure 2.1.

Source: Clarence Valley Council Residential Zones DCP

Figure 2.1: West Yamba Urban Release Area

2.1.2 Adjacent Developments

Development of the WYURA has commenced with construction and sales of residential sites within the adjacent, approved 161 Lot residential development at Lot 158 DP1279485. It is also understood that approvals are in place and / or applications are underway for seniors living and manufactured home sites within the WYURA.

Individual development applications recognised by Council are shown in Figure 2.2.

SOURCE: Nearmap (edited by Bitzios)

Figure 2.2: Recognised Development Applications

2.2 Existing Road Network

Details of the existing road network surrounding the subject site are detailed in Table 2.1.

Table 2.1: Surrounding Road Network

Road Name	Jurisdiction	No. of Lanes	Hierarchy	Divided	Posted Speed
Yamba Road	Council	2	Sub-Arterial	No	50km/h
Carrs Drive	Council	2	Large Lot Residential Road	No	60km/h
Golding Street	Council	2	Collector	No	50km/h

The existing key intersections in the vicinity of the subject site are outlined in Table 2.2.

Table 2.2: Key Intersections

Intersection	Jurisdiction	Туре
Yamba Road / Treelands Drive	Council	Roundabout
Yamba Road / Carrs Drive	Council	Roundabout
Yamba Road / Shores Drive	Council	Roundabout
Yamba Road / Golding St	Council	Roundabout

2.3 Alternate Transport

Limited public transport accessibility is available to the current site with the bus stops located on Yamba Road to the north of the WYURA. These bus stops service local route 380 and bus stops near the Yamba Fair also service the North West NSW Intercity service.

Since development within the WYURA is currently in early stages, there is also limited active transport connectivity in the vicinity of the subject site. An off-road shared path is however present connecting St James Catholic Primary School to Yamba Road.

As will be detailed further in this report, improvements to alternate transport provisions are planned as a part of the area's urbanisation, with further WYURA development.

3. DEVELOPMENT DETAILS

3.1 Proposed Development

The proposed development area forms a large part of the WYURA incorporating a mix of primarily residential land uses. The breakdown of proposed uses and yields by Lot are as follows:

Lot 21 DP1279485: 89 low-density residential Lots

Lot 18 DP1090409:
 161 low-density residential Lots and public recreation (park)

- Lot 46 & 47 DP751395:
 - 289 low-density residential Lots
 - 30 dwelling medium-density residential site
 - Max. 1000m² GFA commercial / retail site.

The proposed development area within the WYURA is illustrated in Figure 3.1.

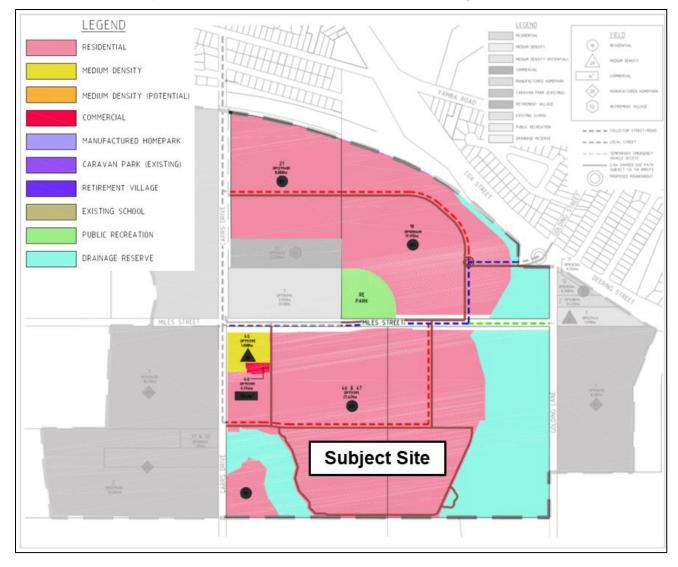


Figure 3.1: Proposed Development

As shown, proposed development land uses are consistent with WYURA planning.

4. EXTERNAL TRAFFIC ASSESSMENT

4.1 Surveyed Traffic

4.1.1 Traffic Surveys

Intersection traffic surveys were undertaken on Wednesday 20 July 2022 at the following intersections:

- Yamba Road / Carrs Drive
- Yamba Road / Treelands Drive
- Yamba Road / Shores Road
- Yamba Road / Golding Street.

In addition to the intersection surveys, 7-day automatic tube count data was also recorded on Yamba Road between 20 July and 26 July 2022. Based on the survey data collected, the following peak hours were determined:

AM Peak hour: 08:00am-09:00amPM Peak hour: 03:15pm-04:15pm

Detailed traffic survey data is provided at **Appendix B**. Peak hour traffic volumes surveyed at the above intersections are also detailed at **Appendix C** (Sheet 1).

4.1.2 Traffic Growth

A compounding growth rate of 1.5% per annum was applied to surveyed through traffic volumes on Yamba Road to forecast future year traffic. This growth rate is consistent with other residential development application assessments in the region and is considered conservative as:

- This growth rate excludes traffic generated by developments within the WYURA which will be added separately, as detailed further later in this document
- This exceeds the historical population growth of 0.8% p.a. in the Yamba area as specified by profile.id.

As there is limited remaining development potential (excluding WYURA) via side-streets, a compounding growth rate of 0.8% per annum was applied to turn movements to and from side-streets, consistent with the historical growth rate. This caters for potential minor infill development in these existing areas.

It is forecast that full development of the development area may occur by 2033 and as such this is adopted as the 'year of opening' for the purposes of this assessment. Traffic volumes with the above growth rate applied for the estimated year of opening (2033) and 10-year design horizon (2043) are provided at **Appendix C** (Sheet 2 & 3).

4.1.3 Seasonality

It is acknowledged that coastal areas in northern New South Wales are subject to increased traffic demands during busy holiday periods, especially the summer peaks. To determine the influence of seasonality of traffic volume, data was sourced from the TfNSW traffic counter site located on the Pacific Highway at the Clarence Rive bridge (station ID HWDSTC). This site provided year-round traffic data in 2018 with average daily traffic volumes by month illustrated in Figure 4.1.

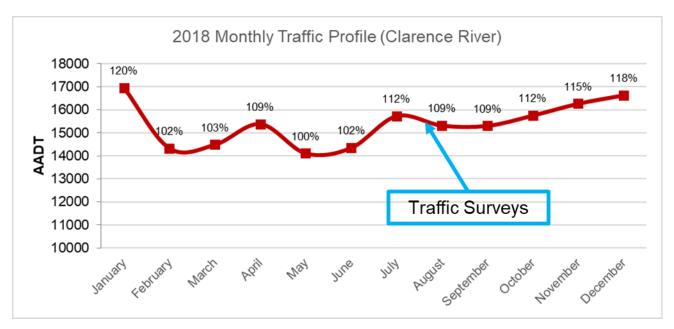


Figure 4.1: Pacific Highway Seasonal Traffic Volumes

As expected, peak traffic volumes occur in the months of December and January coinciding with summer holiday periods. Smaller increases in average daily traffic volumes were also observed in April and July corresponding with Easter and school holiday periods.

Traffic surveys were undertaken at the end of July after the school holiday period. Therefore, seasonal peak (January) traffic volumes area expected to be approximately 11% higher than surveyed. An 11% increase was applied to forecast traffic volumes (determined above) with estimated seasonal peak volumes provided at **Appendix C** (Sheet 4 & 5) for the year of opening (2033) and 10-year design horizon (2043) seasonality testing.

4.2 Adjacent Development Traffic

4.2.1 Adjacent Site Traffic Generation

To determine the cumulative impact of all WYURA developments, traffic generation associated with adjacent sites is also considered. Traffic generation rates for these developments were adopted as per the *TfNSW* (formally RMS) Guide to Traffic Generating Developments Technical Direction (2013). Expected traffic generation by recognised development applications outlined in Section 2.1.2 is detailed in Table 4.1.

Table 4.1: Adjacent Development Traffic Generation

Lot Number	Land Use	Quantity	Traffic Gene	Peak Trips		
Lot Number	ot Number Land Ose		AM	PM	AM	PM
Lot 158 DP 1279485	Low-Density Residential	161 Lots	0.71 trips / Lot	0.78 trips / Lot	114	126
Lot 20 DP700910	Seniors Living	52 Dwellings	0.4 trips / Dwelling	0.4 trips / Dwelling	21	21
Lot 1 DP1279485	Manufactured Homes	200 Lots	0.4 trips / Lot	0.4 trips / Lot	80	80
Lot 2 DP1279485	Manufactured Homes	216 Lots	0.4 trips / Lot	0.4 trips / Lot	86	86
Total						

As shown, adjacent recognised developments are expected to generate in the order of 302 peak hour vehicle trips in the AM peak hour and 313 peak hour vehicle trips in the PM peak hour.

Typical residential directionality splits were applied to this traffic generation to quantify expected trips in and out of adjacent development sites as detailed in Table 4.2.

Table 4.2: Adjacent Development Traffic Directionality

Land Hoo	AM Trip Split		PM Tips Split		AM Trips (veh/h)		PM Trips (veh/h)	
Land Use	IN	OUT	IN	OUT	IN	OUT	IN	OUT
Residential	30%	70%	70%	30%	92	213	220	95

4.2.2 Adjacent Site Trip Distribution

Traffic distribution of adjacent WYURA developments is adopted based on surveyed traffic movement at the Yamba Road / Carrs Drive intersection.

Development traffic distribution for adjacent sites and subsequent trip assignment is provided at **Appendix C** (Sheet 6 & 7) with only the Carrs Drive connection to the WYURA.

4.3 Background Traffic

For the purposes of this assessment background traffic is considered as surveyed traffic volumes, with traffic growth rates applied, plus the above traffic generation of the adjacent development sites. Assuming all adjacent sites are fully developed, year-of-opening (2033) and 10-year design horizon (2043) background traffic volumes, with and without seasonality factors applied, are provided at **Appendix C** (Sheet 8 to Sheet 11).

4.4 Proposed Development Traffic

4.4.1 Proposed Development Traffic Generation

Traffic generation rates for the proposed low-density residential Lots were adopted as per the *TfNSW* (formally RMS) Guide to Traffic Generating Developments Technical Direction (2013). Traffic generation rates for the medium-density residential and commercial land uses proposed were adopted as per the *TfNSW* (formally RMS) Guide to Traffic Generating Developments (2002).

The commercial area proposed will comprise of a maximum of 1,000m² gross floor area (GFA). In accordance with TfNSW guides, gross-leasable floor area (GLFA) is on average equal to 80% of GFA. As such, traffic generation for the proposed commercial use is based on a yield of 800m² GLFA.

The proposed commercial area is small in scale and not a key destination like Yamba Fair. As such, a significant portion of the patronage to this site is expected to be walk-up trade from WYURA residents or 'drop-in' trips for locals with this patronage therefore not generating external vehicle trips. As such, consistent with the TfNSW *Guide to Traffic Generating Developments*, a 20% reduction is applied to external traffic generation to cater for these 'drop-in' trips.

Traffic generation rates and peak hour development trips are therefore detailed in Table 4.3.

Table 4.3: Proposed Development Traffic Generation

Lot Number	Lot Number Land Use			eneration ate	Peak Trips		
		·	AM	PM	AM	PM	
Lot 21 DP1279485	Low-Density Residential	89 Lots	0.71 trips / lot	0.78 trips / lot	63	69	
Lot 18 DP1090409	Low-Density Residential	161 Lots	0.71 trips / lot	0.78 trips / lot	114	126	
	Low-Density Residential	289 Lots	0.71 trips / lot	0.78 trips / lot	205	225	
Lot 46 & 47 DP751395	Medium-Density Residential	30 Dwellings	0.5 trips / dwellings	0.5 trips / dwelling	15	15	
DF 731393	Commercial	800m ² GLFA	12.3 trips per 100m ² GLFA	12.3 trips per 100m ² GLFA	79*	79*	
*000/ vaduation applied	Net Existing Trips						

^{*20%} reduction applied for local 'drop-in' trips

The proposed development is expected to generate in the order of 476 vehicle trips in the AM peak hour and 514 vehicle trips in the PM peak hour.

Typical residential and commercial directionality splits were applied to this traffic generation to quantify expected trips in and out of the proposed development as detailed in Table 4.4.

Table 4.4: Development Trip Directionality

Land Hoo	AM Trip Split		PM Tips Split		AM Trips (veh/h)		PM Trips (veh/h)	
Land Use	IN	OUT	IN	OUT	IN	OUT	IN	OUT
Residential	30%	70%	70%	30%	120	279	306	132
Commercial	50%	50%	50%	50%	39	39	39	39

4.4.2 Proposed Development Trip Distribution

Currently, the only formal vehicle access to the proposed development area is via Carrs Drive. As such, traffic distribution for proposed development trips is as per the expected distribution for adjacent sites detailed in Section 4.2.2 and **Appendix C** (Sheet 6). Development trip assignment, assuming access via only the Carrs Drive roundabout is therefore provided at **Appendix C** (Sheet 12).

However, ultimate development traffic distribution will change substantially following the construction of the future Golding Street connection. It is expected that the majority of development trips travelling to / from the east on Yamba Road will access the development via Golding Street and most trips to / from the west via Carrs Drive.

Based on surveyed traffic volumes at the Carrs Drive, Treelands Drive and Golding Street roundabouts, the split of trips travelling to / from the east and west are outlined in Table 4.5.

Table 4.5: Development Trip Distribution - With Golding Street Connection

Peak Hour	Outbound from	n Development	Inbound to Development		
Peak Hour	West	East	West	East	
AM	46%	54%	45%	55%	
PM	44%	56%	55%	45%	

A small number of residents may choose to use the western roundabout access to travel east or viceversa. As such, 5% of the above trips were assumed to relocate to the utilise the alternate access point. For example, it is assumed that the Carrs Drive roundabout caters for 46% of development traffic exiting the proposed development in the AM peak, with 41% of trips travelling to the west and 5% travelling to the east.

Based on the above, expected development traffic distribution across surveyed intersections is provided at **Appendix C** (Sheet 13 & 14) for ingress and egress to / from the development. Proposed development trip assignment, assuming the construction of both WYURA access roads, is therefore provided at **Appendix C** (Sheet 15).

With the construction of the Golding Street link, it is expected that <u>background traffic distribution for adjacent manufactured homes sites will redistribute</u>, in line with the expected development trip distribution. As such, revised trip assignment of adjacent sites (background traffic) is provided at **Appendix C** (Sheet 16). Trips to / from the adjacent residential dwellings and seniors living site north of Miles Street are expected to all ingress / egress via Carrs Drive and as such, trip assignment for these sites is unchanged.

4.5 Design Traffic

Design traffic volumes are equal to surveyed traffic volumes with growth factors applied, plus adjacent development traffic, plus the proposed development traffic generation. Design traffic volumes are therefore provided at **Appendix C** (Sheet 17 to Sheet 22) for the following scenarios:

- Access via Carrs Drive only:
 - Year of opening (2033) design traffic volumes (Sheet 17)
 - Year of opening (2033) summer peak design traffic volumes (Sheet 18)
- Access via Carrs Drive and Golding Street
 - Year of opening (2033) design traffic volumes (Sheet 19)
 - Year of opening (2033) summer peak design traffic volumes (Sheet 20)
 - 10-year design horizon (2043) design traffic volumes (Sheet 21)
 - 10-year design horizon (2043) summer peak design traffic volumes (Sheet 22).

The Golding Street connection will ultimately be provided and as such Carrs Drive only scenarios were excluded for ultimate (2043) design scenarios.

4.6 SIDRA Assessment

4.6.1 Methodology

The key intersections outlined in Section 2.1.2 were assessed using SIDRA Intersection 9 to determine the impact of development trips on the surrounding road network. The key intersections assessed are as follows:

- Yamba Road / Treelands Drive (Roundabout)
- Yamba Road / Carrs Drive (Roundabout)

- Yamba Road / Shores Drive (Roundabout)
- Yamba Road / Godling Street (Roundabout)

The assessment was undertaken for the weekday AM and PM peak hours. Detailed SIDRA outputs for with and without development scenarios at the expected year of opening (2033) and 10-year design horizon (2043) are provided at **Appendix D**.

4.6.2 Yamba Road / Treelands Drive

The Yamba Road / Treelands Drive intersection layout as assessed in SIDRA is shown in Figure 4.2.

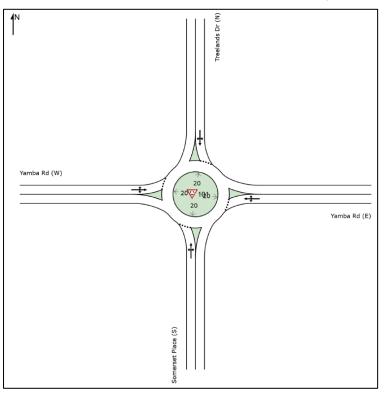


Figure 4.2: Yamba Road / Treelands Drive SIDRA Intersection Layout

Table 4.6 summarises the SIDRA results for the Yamba Road / Treelands Drive intersection for AM and PM peak hours.

Table 4.6: Yamba Road / Treelands Drive SIDRA Results Summary

	AM Peak				PM Peak					
Design Year	DOS (v/c)	Delay (sec)	LOS	Queue (m)	DOS (v/c)	Delay (sec)	LOS	Queue (m)		
Background										
2033	0.54	7	А	35	0.53	8	А	31		
2043	0.61	8	А	44	0.60	8	А	41		
2033 Seasonal	0.61	8	А	42	0.60	8	А	40		
2043 Seasonal	0.69	9	А	58	0.69	10	А	58		
Design (Carrs Drive Access Only)										
2033	0.66	8	А	51	0.62	8	А	41		
2033 Seasonal	0.73	9	Α	68	0.69	10	А	56		

Design (Carrs Drive & Golding Street)									
2033	0.68	8	А	53	0.65	9	А	48	
2043	0.75	9	А	74	0.75	10	А	68	
2033 Seasonal	0.74	9	А	72	0.75	10	А	68	
2043 Seasonal	0.83	11	А	110	0.89	14	А	119	

As shown, the Yamba Road / Treelands Drive roundabout is expected to operate within acceptable performance limits with or without the proposed development in all scenarios tested, with the exception of the 2041 PM seasonal peak. During this peak, traffic volumes exceed the theoretical maximum for a roundabout (DOS > 0.85). However, average delays during this peak are low (14 seconds) and no turn individual turn movement operates at worse the LOS C. Noting this, and that these level of traffic volumes are only expected to occur during the PM peak at the busiest summer peak periods, the intersection is considered to have suitable capacity to cater for all tested scenarios.

4.6.3 Yamba Road / Carrs Drive

The Yamba Road / Carrs Drive intersection layout as assessed in SIDRA is shown in Figure 4.3.

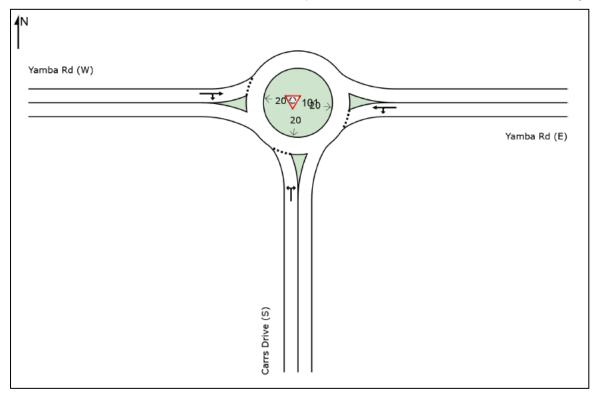


Figure 4.3: Yamba Road / Carrs Drive SIDRA Intersection Layout

Table 4.7 summarises the SIDRA results for the Yamba Road / Carrs Drive intersection for AM and PM peak hours.

Table 4.7: Yamba Road / Carrs Drive SIDRA Results Summary

	AM Peak				PM Peak						
Design Year	DOS (v/c)	Delay (sec)	LOS	Queue (m)	DOS (v/c)	Delay (sec)	LOS	Queue (m)			
Background											
2033	0.55	7	А	35	0.53	6	А	34			
2043	0.63	7	А	45	0.60	6	А	43			
2033 Seasonal	0.61	7	А	42	0.58	6	А	40			
2043 Seasonal	0.70	8	А	63	0.66	7	Α	53			
		Design	(Carrs Dri	ve Access	Only)						
2033	0.85	13	А	109	0.81	10	А	95			
2033 Seasonal	0.93	19	В	167	0.87	12	Α	127			
	Design (Carrs Drive & Golding Street)										
2033	0.58	8	А	41	0.66	7	А	55			
2043	0.66	8	А	52	0.74	8	А	71			
2033 Seasonal	0.64	8	А	49	0.72	8	А	66			
2043 Seasonal	0.73	10	А	71	0.80	9	А	89			

As shown, the Yamba Road / Carrs Drive intersection is expected to operate within acceptable performance limits to the year 2043 without the proposed development. When including the proposed development (but prior to the construction of the Golding Street link), traffic volumes will exceed the theoretical capacity of the roundabout (DOS > 0.85) by 2033. With the Golding Street link in place, the intersection will operate within acceptable limits by 2043.

Based on the above, and consistent with WYURA planning, the Golding Street connection is demonstrated to be required to facilitate efficient distribution of WYURA traffic onto the external road network. Further assessment to determine the trigger point for the Golding Street connection is provided at Section 4.8.1.

4.6.4 Yamba Road / Shores Drive

The Yamba Road / Shores Drive intersection layout as assessed in SIDRA is shown in Figure 4.4.

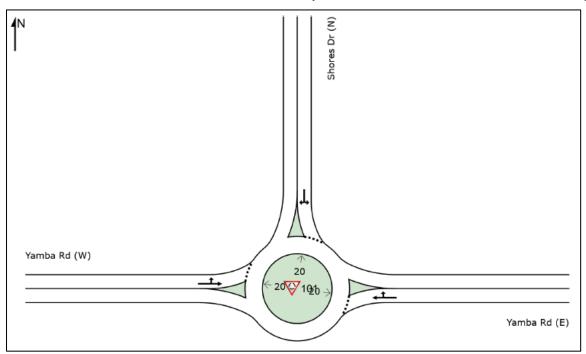


Figure 4.4: Yamba Road / Shores Drive SIDRA Intersection Layout

Table 4.8 summarises the SIDRA results for the Yamba Road / Shores Drive intersection for AM and PM peak hours.

Table 4.8: Yamba Road / Shores Drive SIDRA Results Summary

	AM Peak				PM Peak							
Design Year	DOS (v/c)	Delay (sec)	LOS	Queue (m)	DOS (v/c)	Delay (sec)	LOS	Queue (m)				
	Background											
2033	0.55	6	А	34	0.52	6	А	34				
2043	0.63	6	А	44	0.60	6	А	42				
2033 Seasonal	0.61	6	А	41	0.59	6	А	40				
2043 Seasonal	0.70	7	А	55	0.68	6	А	52				
		Design	(Carrs Dri	ve Access	Only)							
2033	0.68	6	А	53	0.63	6	А	55				
2033 Seasonal	0.74	7	А	64	0.68	6	А	66				
	Design (Carrs Drive & Golding Street)											
2033	0.53	6	А	32	0.53	6	А	31				
2043	0.61	6	А	41	0.61	6	А	39				
2033 Seasonal	0.59	6	А	39	0.59	6	А	37				
2043 Seasonal	0.68	7	А	51	0.68	6	А	48				

As shown, the Yamba Road / Shores Drive intersection is expected to operate within acceptable performance limits for all tested scenarios. It is further noted that delivery of the Golding Street connection, significantly benefits intersection performance at the Shores Drive roundabout.

4.6.5 Yamba Road / Golding Street

The Carrs Drive / Golding Street intersection layout as assessed in SIDRA is shown in Figure 4.5.

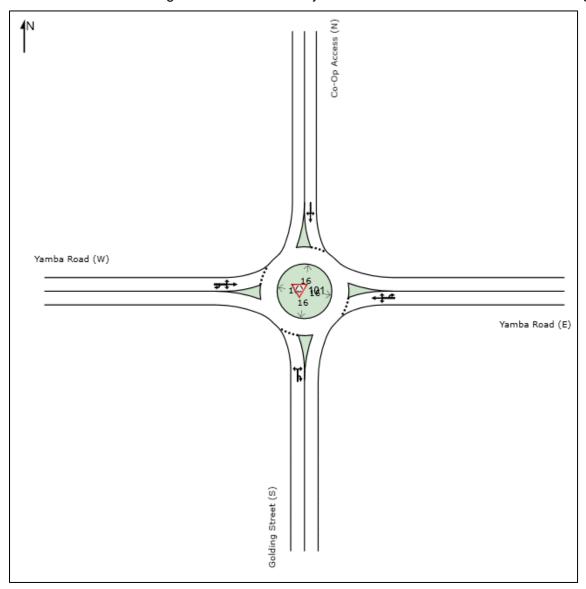


Figure 4.5: Yamba Road / Golding Street SIDRA Intersection Layout

Table 4.9 summarises the SIDRA results for the Yamba Road / Shores Drive intersection for AM and PM peak hours.

Table 4.9: Yamba Road / Golding Street SIDRA Results Summary

	AM Peak				PM Peak						
Design Year	DOS (v/c)	Delay (sec)	LOS	Queue (m)	DOS (v/c)	Delay (sec)	LOS	Queue (m)			
Background											
2033	0.66	5	А	43	0.58	5	А	24			
2043	0.75	6	А	63	0.66	5	А	32			
2033 Seasonal	0.73	6	А	55	0.64	5	А	29			
2043 Seasonal	0.84	6	А	88	0.72	5	А	41			
		Design	(Carrs Dri	ve Access	Only)						
2033	0.72	5	А	53	0.72	5	А	41			
2033 Seasonal	0.79	6	А	71	0.78	6	А	52			
	Design (Carrs Drive & Golding Street)										
2033	0.81	8	А	83	0.70	6	А	40			
2043	0.93	11	В	166	0.78	6	А	56			
2033 Seasonal	0.90	10	А	132	0.76	6	А	52			
2043 Seasonal	1.04	31	С	433	0.85	7	А	11			

As shown, the Yamba Road / Golding Street intersection is expected operate within acceptable performance limits by the year 2033 with or without the proposed development.

With the development, theoretical capacity limits of the roundabout (DOS>0.85) are exceeded in the 2043 AM peak. However, without the seasonality factors also applied average intersection delays remain low, with LOS C not exceeded for any movement. As such, forecast traffic volumes are only expected to result in intersection failure in the 2043 AM peak hour during peak seasonal traffic volumes.

It is however expected that potential 2043 intersection impacts will be offset by future planned network upgrades in the area as detailed in Section 4.8.2.

4.7 SIDRA Results Summary

The assessment detailed above indicates that the Yamba Road / Treelands Drive and Yamba Road / Shores Drive intersections are expected to operate within acceptable performance limits by 2043 with or without the proposed development.

With full development of the WYURA, the Yamba Road / Carrs Drive intersection will fail by 2033 if the Golding Street connection is not delivered. With the delivery of the Golding Street link this intersection will operate within acceptable limits for the until the 10-year design horizon (2043).

Traffic volumes are expected to exceed the capacity of the Yamba Road / Golding Street intersection by 2043 with or without the proposed development. The extent of the failure of this intersection is exacerbated by the proposed development and the future Golding Street connection.

4.8 Road Infrastructure Upgrades

4.8.1 Golding Street Connection Trigger Points

As previously detailed, completion of the proposed development and adjacent sites would result in the Yamba Road / Carrs Drive intersection operating over capacity by 2033 if the Golding Street

connection to the WYURA was not constructed. As such, this link shall be constructed prior to full development of the subject site. To determine the trigger point for this link, development traffic volumes were incrementally added to the 2033 background traffic volumes (with seasonality factors applied).

The threshold for construction of the new Golding Street link was determined as the point at which Yamba Road / Carrs Drive roundabout reaches theorical capacity (DOS 0.85) in the AM peak. **Maximum proposed development yields** (i.e. subject site only) at this threshold were determined to be as follows:

Development of the commercial site, medium density site and a maximum of 350 low-density residential Lots:

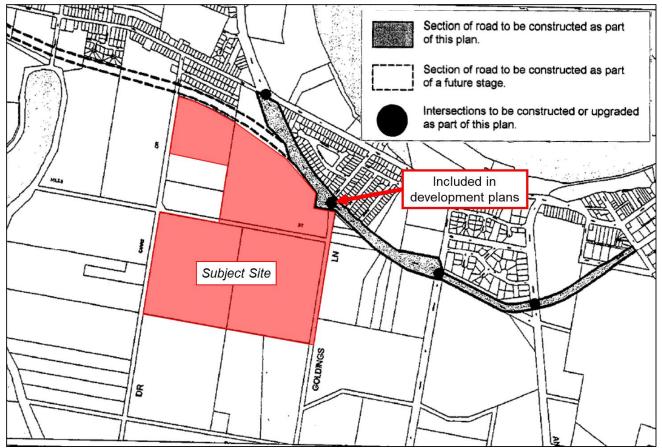
OR

Development of a maximum of 450 low-density residential Lots.

Note that the above maximum yields for the subject site assuming all adjacent WYURA developments are online.

SIDRA results for the Yamba Road / Carrs Drive intersection at the threshold point are summarised in Table 4.10.

Table 4.10: SIDRA Results Summary Yamba Road / Carrs Drive 2033 Development Thresholds


	AM Peak				PM Peak					
Design Year	DOS (v/c)	Delay (sec)	LOS	Queue (m)	DOS (v/c)	Delay (sec)	LOS	Queue (m)		
Comme	Commercial Site, Medium Density Residential Site and 350 Residential Lots									
2033 Seasonal	0.85	15	В	110	0.71	8	Α	61		
450 Residential Lots										
2033 Seasonal	0.85	15	В	109	0.76	9	А	77		

At the above WYURA development thresholds, the Yamba Road / Carrs Drive roundabout is operating at theoretical maximum capacity limits (DOS 0.85) in the AM peak. It is therefore recommended that the Golding Street connection be provided prior to WYURA development proceeding beyond the abovementioned thresholds.

4.8.2 Golding Street Connection via Deering Street

The Maclean Shire Council (now Clarence Valley Council) Section 94 Contributions Plan: Yamba Urban Bypass & Urban Intersections (2000) outlines the planned road connection between Yamba Road and Coldstream Street as outlined in Figure 4.6.

Source: Section 94 Contributions Plan: Yamba Urban Bypass & Urban Intersections (edited by Bitzios)

Figure 4.6: Yamba Urban Bypass Plan

This planned link would provide an alternate local connection between the WYURA and the Yamba Town Centre to the east thereby significantly reducing WYURA traffic flows via Yamba Road and importantly at the Yamba Road / Golding Street roundabout.

Noting that traffic flows at the Yamba Road / Golding Street roundabout are only expected to marginally exceed the capacity of the roundabout, the Deering Street connection between Golding Street and Angourie Road alone is expected to offset impacts on Yamba Road. As illustrated in Figure 4.7 the eastern portion of this Deering Street connection is already constructed. Also, as shown at **Appendix A**, a roundabout is proposed as a part of the development at the Golding Street / Deering Street intersection at the western end of this connection.

Source: SIXMaps (edited by Bitzios)

Figure 4.7: Yamba Urban Bypass Deering Street Connection

Based on the above, the proposed development will contribute to the Deering Street connection portion of the Yamba Urban Bypass through the provision of the roundabout as well as contributions in accordance with the Bypass S94 plan (in addition to standard development contributions). As such, the development will be contributing to the majority of the expected cost of the remaining bypass between Golding Street and Angourie Road.

With the proposed development and other developments within the WYURA it is expected that this connection will be warranted / provided by 2043. By providing a majority contribution to this connection, which offsets impacts on Yamba Road / Golding Street intersection previously identified, the proposed development is considered to provide appropriate mitigation measures to offset the impact of development traffic on the external road network.

5. INTERNAL TRAFFIC ASSESSMENT

5.1 Overview

The future Carrs Drive / Miles Street and Carrs Drive / Proposed Collector Road intersections form key internal intersections within the WYURA. The following assessment therefore forecasts ultimate traffic volumes and subsequent intersect requirements at these intersections assuming full development of the WYURA.

5.2 Traffic Volumes

It is expected that ultimate traffic volumes at these intersections will be a result of expected WYURA developments south of Miles Street. For the purposes of this assessment, and generally consistent with traffic distributions determined above, it is estimated that 50% of development these trips will enter / exit the site via Carrs Drive, with the remaining trips via the future Golding Street link.

Traffic distribution through the intersection will vary depending on the access points for the future development sites. Traffic distributions for the various southern WYURA developments are provided at **Appendix E** (Sheet 1 to Sheet 6). Ultimate traffic volumes at the Carrs Drive / Miles Street and Carrs Drive / Proposed Collector Road intersections are subsequently provide at **Appendix E** (Sheet 7).

5.3 Turn Warrants Assessment

A turn warrant assessment was undertaken in accordance with the *Austroads Guide to Traffic Management: Part 6* at the Carrs Drive / Miles Street intersection and Carrs Drive / Proposed Collector Road intersections adopting the above forecast ultimate traffic volumes as illustrated in Figure 5.1 and Figure 5.2.

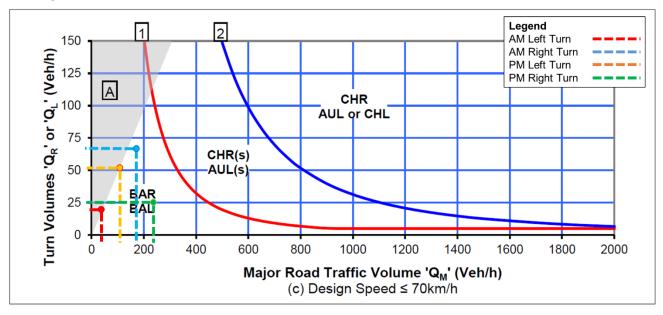


Figure 5.1: Carrs Drive / Miles Street Turn Warrants Assessment

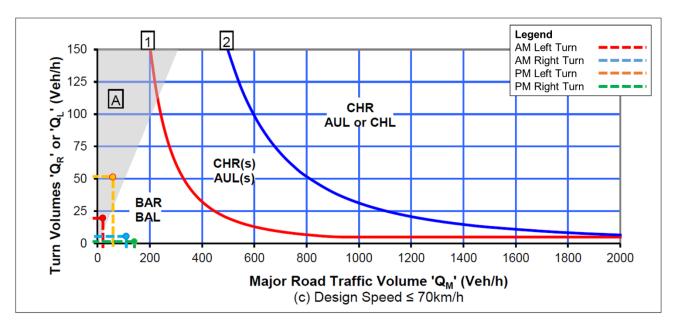
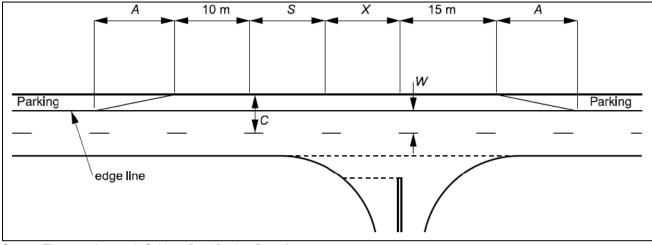



Figure 5.2: Carrs Drive / Proposed Collector Road Turn Warrants Assessment

As shown, basic left-turn (BAL) and basic right-turn (BAR) treatments are sufficient to cater for the ultimate traffic volumes at the Carrs Drive / Miles Street and Carrs Drive / Proposed Collector Road intersections.

In accordance with the Austroads Guide to Road Design: Part 4, the urban BAL consists of a kerb return radius that facilitates a single radius turn for a design vehicle. As such, at future development stages, the intersections shall be design with a kerb return radius on the north-east corner of the intersection catering for the required design vehicle, to be confirmed by swept path assessment at design stages.

Standard design for an urban BAR treatment is shown in Figure 5.3.

Source: Figure 7.6 Austroads Guide to Road Design: Part 4A

Figure 5.3: BAR Treatment Design

Approximate design dimensions for the Carrs Drive / Miles Street intersection are as follows:

Lane Width (W): 3.5m
BAR Width (C): 6m
Taper Length (A): 21m
Storage Length (S): 12.5m

Turning Path Distance (X): 6mTotal BAR Length: 85.5m

As collector roads are 5.5m wide from the centreline to the kerb line, with the construction of the future intersections, the western side of Carrs Drive should be widened by 0.5m for the BAR treatment length. For the 85.5m length of the BAR, parking should also be restricted on the western side of Carrs Drive.

6. Access & Road Capacity Assessment

6.1 Road Hierarchy

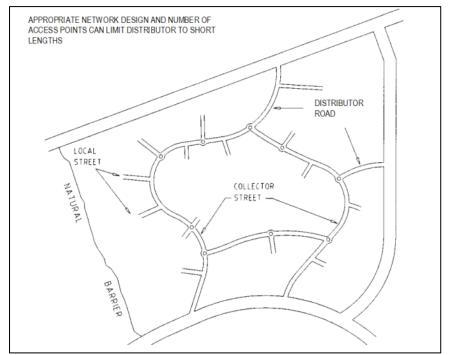
6.1.1 Northern Rivers Road Cross-Sections

Relevant road cross-section requirements in accordance with the *Northern Rivers Design Manual Section D1: Geometric Road Design (Urban and Rural)* are summarised in Table 6.1.

Table 6.1: Northern Rivers Design Manual Road Cross-Section Details

Road Type	Max Traffic Volume (vpd)	Max Speed	Carriageway Width	Footpath Requirement	Min. Verge Width
Local Street	2,000	50km/h	7-9m	Network Dependant	
Collector Street	3,000	50km/h	11m	One side	3.5m
Distributor Road	3,000+	60km/h	13m	One side	

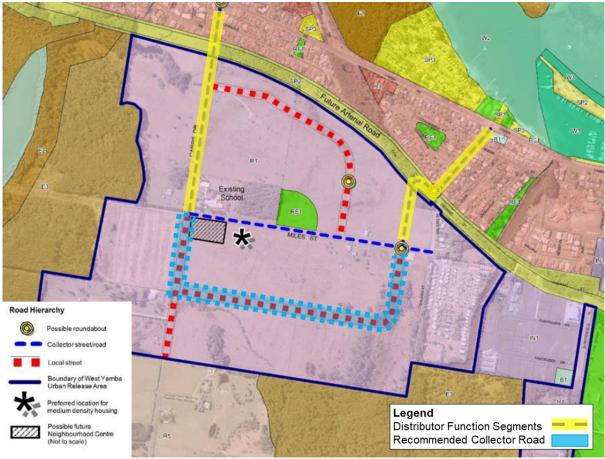
In addition to the above, guidelines are in place for distributor road types as follows:


- Direct access to a distributor should not be provided for single Lot dwellings but may be provided to multi-Lot developments and non-residential land uses
- Distributor roads should serve only the development and should not attract through traffic.

6.1.2 WYURA Network Planning

A road hierarchy plan within the WYURA is provided in Council's DCP identifying the Carrs Drive and Miles Street as future collector roads. However, the following is noted:

- As per Council's DCP, single dwelling Lot access is to be restricted on Miles Street and Carrs Drive north of Miles Street, consistent with a distributor road type
- Planning and land zoning within the WYURA, as per Council's DCP, identifies an ultimate maximum yield of 1,144 dwellings within the WYURA. Daily traffic generation associated with this overarching yield exceeds the capacity of the two collector roads under Council's definition
- As per the Northern Rivers Design Manual, the convenient and safe distribution of traffic generated by a residential development area is the main function of a distributor road type. The application of typical cross-sections for a development area, as per Figure D1.5 of the Northern Rivers Design Manual, is illustrated in Figure 6.1.



Source: Northern Rivers Design Manual D1 Geometric Road Design Figure D1.5

Figure 6.1: Northern Rivers Road Hierarchy Applicable Uses

Based on the above, the northern portion of Carrs Drive and the ultimate eastern connection via Golding Street will perform a distributor road function for the WYURA, as illustrated in Figure 6.2.

Source: Clarence Valley Council Residential Zones Development Control Plan (edited by Bitzios)

Figure 6.2: WYURA Road Hierarchy Function

While segments illustrated are expected to perform a distributor function, it is considered acceptable that carriageway width is constructed as per a collector road type in line with WYURA planning considering that:

- No single Lot accesses are proposed along these sections of road
- Widening of Carrs Drive may encourage increased vehicle speeds, undesirable in proximity to the existing school and future seniors living and neighbourhood centre sites
- An urban road under interrupted flow conditions is noted as providing sufficient road capacity of 18,000 daily trips in accordance with the Austroads Guide to Traffic Management: Part 3.

Additionally, the ultimate daily traffic generation of the proposed development on Lot 46 & 47 is estimated in the order of 3,950 vehicles per day (vpd). While these daily trips will distribute to the external network via various routes, it is expected that the primary road through these Lots would ultimately carry higher than the 2,000vpd limit for a local street. As such, the length of local street illustrated in Figure 6.2 is recommended to instead be provided as a collector street.

6.1.3 Proposed Cross-Sections

Details of proposed road cross-sections within the subject site are outlined in Table 6.2.

Table 6.2: Proposed Road Cross-Sections

Road Type	Capacity	Posted Speed	Carriageway Width	Parking	Footpath	Verge Width	Road Reserve
Local Street	2,000 vpd	50km/h	7.5m	On-Street	Varies	Min. 3.5m	14.5m
Collector	3,000 vpd	·	11m	On-Street	One side		18m

As shown, proposed road cross-sections comply with the relevant requirements of the Northern Rivers Design Manual.

6.2 Heavy Vehicle Access

6.2.1 Construction Traffic

There is expected to be an ongoing need for large earthmoving vehicles (typically truck & dog) to access the site. Noting flooding constraints impacting the subject site require substantial earthworks are as a part of the proposed development.

With development of adjacent sites within the WYURA currently underway, significant construction traffic volumes were surveyed with 10-15% of turns to / from Carrs Drive surveyed as heavy vehicles in the AM peak hour. As evidenced by surveys of other intersections, turning movements to primarily residential catchments would typically include 2-4% heavy vehicle movements.

The above SIDRA assessment carried this high proportion of heavy vehicle movements through to future year intersection assessments. A detailed above, the Yamba Road / Carrs Drive and Yamba Road / Treelands Drive intersections are expected to operate within acceptable performance limits despite the large number of heavy vehicle movements. Construction traffic for the subject site is therefore not expected to result in adverse impact to road network capacity in the vicinity of the subject site.

It is acknowledged that large volumes of heavy vehicles on the local road network would have amenity impacts on surrounding residents. As such, mitigation measures are recommended to ameliorate amenity impacts as follows:

- Heavy vehicle movements to / from the development site should be limited to daylight hours only (e.g. 8:00am to 6:00pm)
- Hourly heavy vehicle movement limits should be applied to the development site so that earthmoving vehicle trips are distributed relatively evenly across the day, minimising impacts at any one period of the day
- Heavy vehicle movements should be restricted on the length of Carrs Drive fronting the St James
 Catholic Primary School between 2:30 and 3:30pm where there will be the peak number of
 students / parents in the vicinity of the school.

It is further noted that the applicant is investigating the potential for local dredging, reducing the need for material to be transport from distant areas.

6.2.2 Service Vehicle Access

Residential components of the proposed development areas are expected to be serviced by 8.8m MRV's (removal trucks) and side-loading refuse collection vehicles. As proposed road cross-sections comply with relevant dimensional requirements, proposed roads will cater for typical servicing requirements for residential neighbourhoods. Any cul-de-sacs within the future development area shall have a minimum radius of 10m to facilitate service vehicle manoeuvring in accordance with the Northern Rivers Design Manual.

Service vehicle access to the future neighbourhood centre will be subject to further development application stages at a later date.

7. ALTERNATE TRANSPORT PROVISIONS

7.1 Public Transport

Future bus services within the WYURA will be subject to further consultation with TfNSW and Council. However, with the construction of future collector roads including Carrs Drive, Miles Street and the recommended collector road within Lot 46 & 47, proposed residential lots will be located within 400m of a potential bus service. As such, the proposed development is considered to provide good opportunity for future public transport connectivity in line with WYURA planning requirements.

7.2 Active Transport Provision

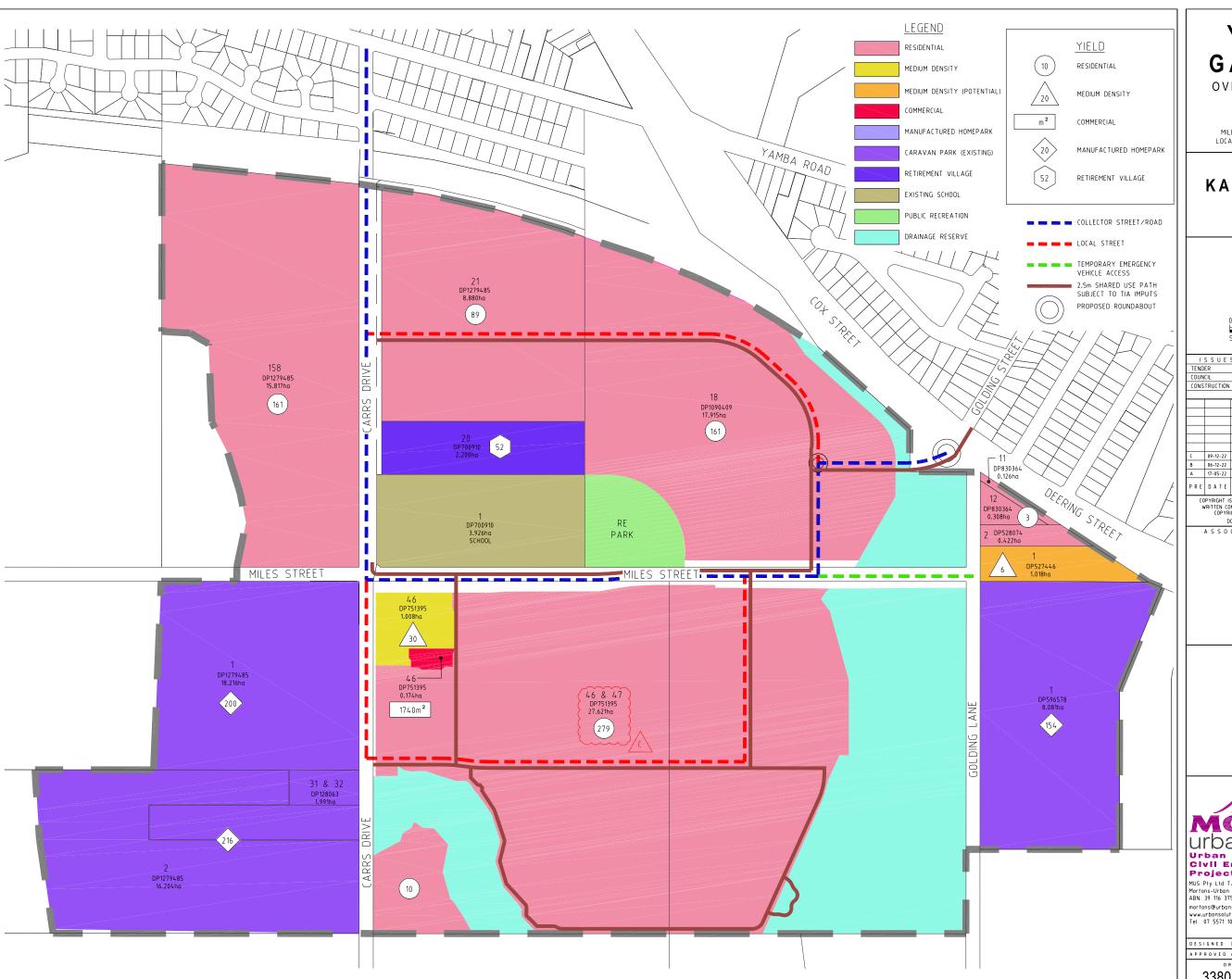
The proposes an active transport connection on all new collector roads and key local roads as shown on the development plans provided at **Appendix A**. These proposed footpaths are considered to provide a high level of active transport connectivity through the proposed development area. Consistent with the requirements of the Northern Rivers Design Manual, footpaths are not required on minor local street / no-through roads.

As per the requirements of the Northern Rivers Design Manual, footpaths shall be a minimum of 1.5m wide.

8. SUMMARY AND CONCLUSIONS

The key findings of the TIA for the proposed West Yamba Urban Release Area residential development in Yamba are as follows:

- The proposed development area within the WYURA comprises of 539 low density residential Lots,
 30 medium-density dwellings and a small neighbourhood centre commercial site
- This TIA considered cumulative impacts of both the proposed development and the multiple recognised development applications adjacent to the subject site
- Noting the currently undeveloped environment in the WYURA, limited alternate transport provisions are existing in the vicinity of the subject site
- The proposed development is expected to generate in the order of 476 vehicle trips in the AM peak hour and 514 vehicle trips in the PM peak hour
- SIDRA assessment was undertaken at key intersections at years 2033 and 2043 with and without the proposed development area as well as with and without a 11% seasonality factor applied
- SIDRA assessment indicates that the future Golding Street connection is required to cater for full
 development of the WYURA and redistribute traffic volumes from the Yamba Road / Carrs Drive
 intersection. This link is warranted by the subject site's delivery of 450 residential Lots or 350
 Residential Lots and the proposed neighbourhood centre site
- External intersections are generally expected to operate within acceptable performance limits with or without the proposed development. With development traffic and seasonality factors applied, the Yamba Road / Golding Street intersection is expected to fail by 2043. However, the Yamba Urban Bypass is expected to at least be partially constructed by this date offsetting the impacts to the roundabout. As a part of the development the Golding Street / Deering Street roundabout will be constructed and S94 contributions will be provided and as such, the development is considered to suitably offset development traffic impacts
- The future Carrs Drive / Miles Street and Carrs Drive / Collector Road intersections will ultimately warrant the provision of urban BAL and BAR turn treatments
- Road cross-sections are proposed in accordance with the Northern Rivers Design Manual and generally in accordance with the WYURA road hierarchy planning
- Construction traffic for the subject site is not expected to result in adverse impact to road network
 capacity in the vicinity of the subject site however, it is recommended that measures be
 implemented to manage potential amenity impacts on local residents
- Proposed footpaths are considered to provide a high level of active transport connectivity through the proposed development area and road links provide good opportunity for future public transport connectivity in line with WYURA planning requirements.


Based on the above assessment, it is concluded that there are no significant traffic or transport impacts associated with the proposed development to preclude its approval and relevant conditioning on transport planning grounds.

Appendix A: Development Plans

YAMBA GARDENS

PROJECT NAME

OVERALL SKETCH

RP DESCRIPTION
Lot 46 on DP751395.
& Lot 47 on DP751395
MILES ST, YAMBA NSW 2464
LOCALITY OF CLARENCE VALLEY

CLIENT

KAHUNA NO. 1 PTY LTD

0 125 250 375 500 625m Scale 1:12500 - A1 (1:25000 - A3)

COPYRIGHT IS VESTED IN MORTONS URBAN SOLUTIONS AND WRITTEN CONSENT IS REQUIRED PRIOR TO REPRODUCTION. COPYRIGHT MORTONS URBAN SOLUTIONS 2000 .

DO NOT SCALE FROM THIS DRAWING.

ASSOCIATED CONSULTANTS

DRAWING TITLE

TRAFFIC IMPACT ASSESMENT LOT YEILDS

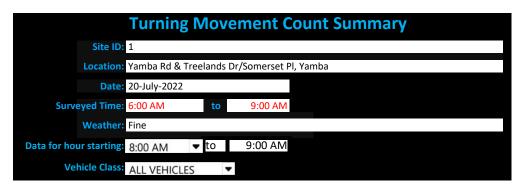
Urban & Regional Planning Civil Engineering Project Coordination

MUS Pty Ltd T/As:
Mortons-Urban Solutions
ABN: 39 116 375 065
mortons@urbansolutions.net.au
www.urbansolutions.net.au
Tel 07 5571 1099

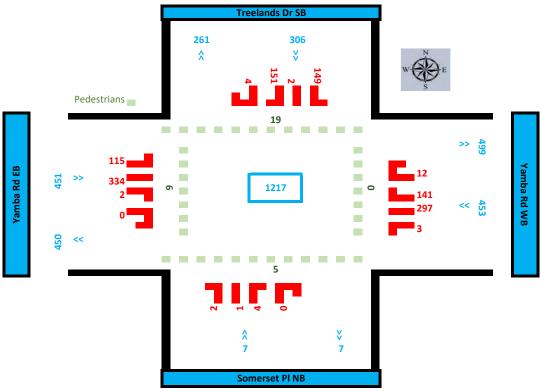
Postal Address PO Box 2484 outhport QLD 4215 Gold Coast Office

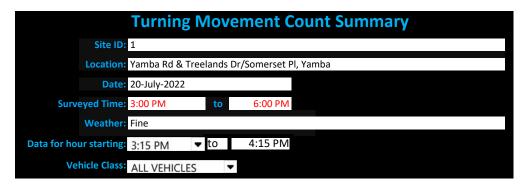
Gold Coast Office Suite 9, 19 Short St Southport QLD 4215

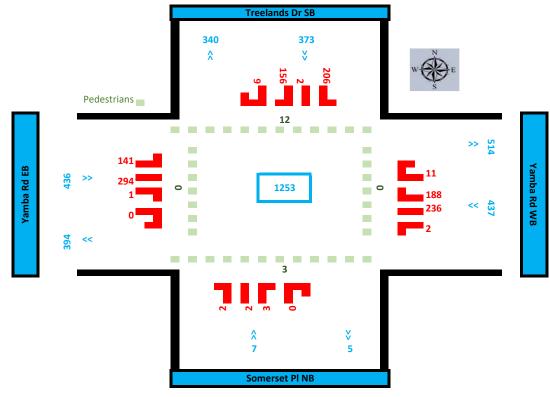
DESIGNED PP DRAWN SF
APPROVED SEMENTAL NER 906726 DATE 17-05-22

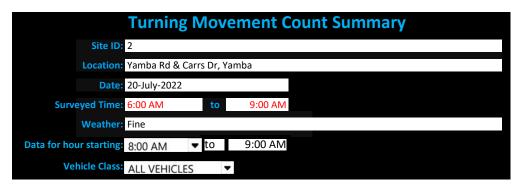

33801-ALL-SK030

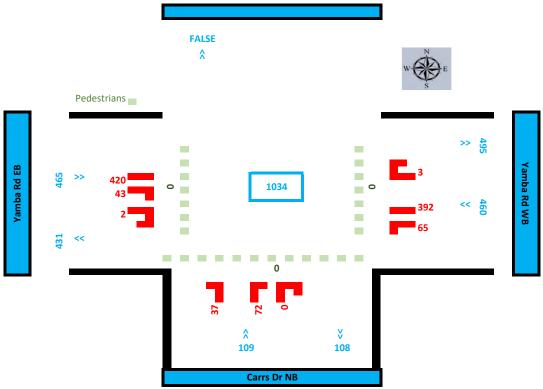
C A M E N D.

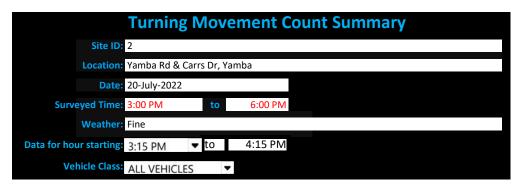


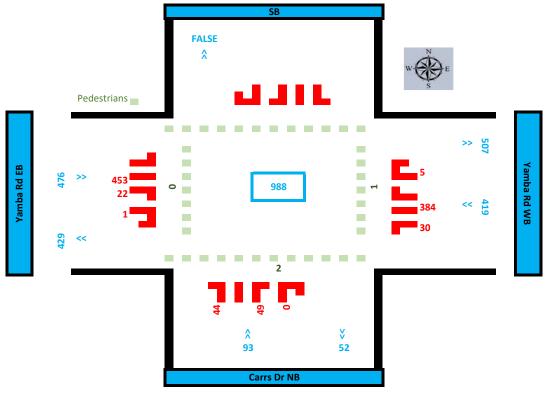

Appendix B: Traffic Surveys

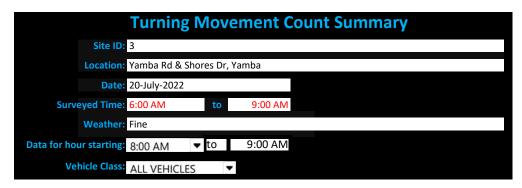


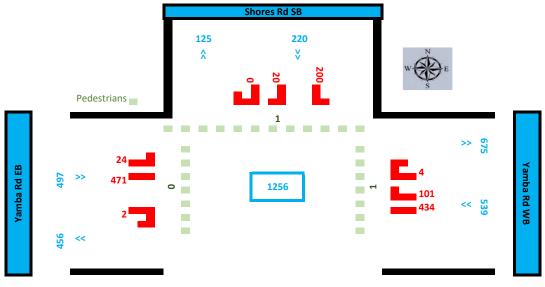


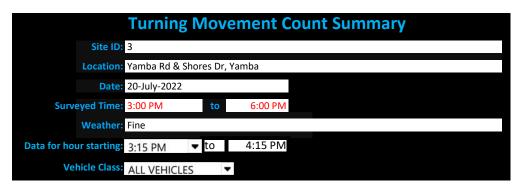


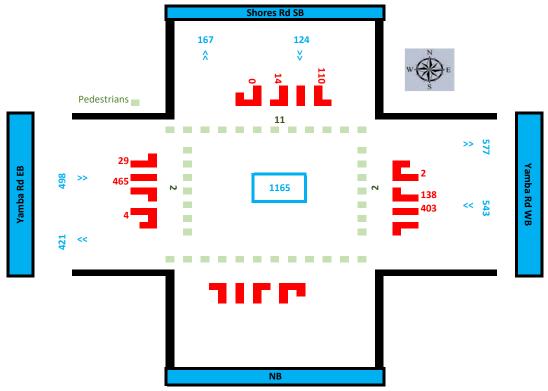


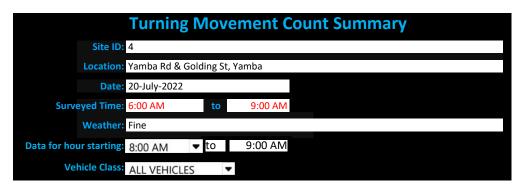


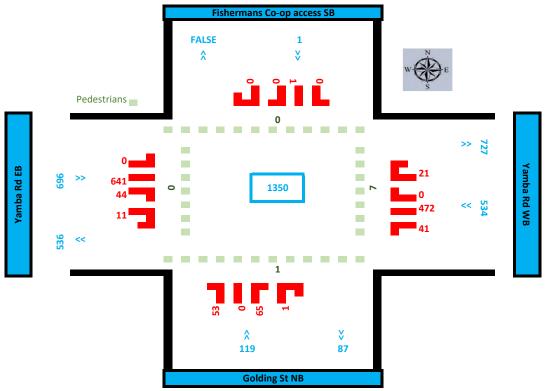


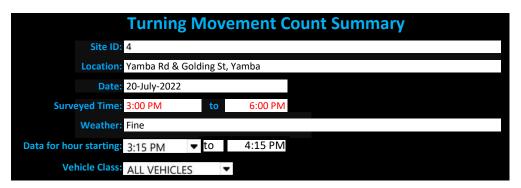


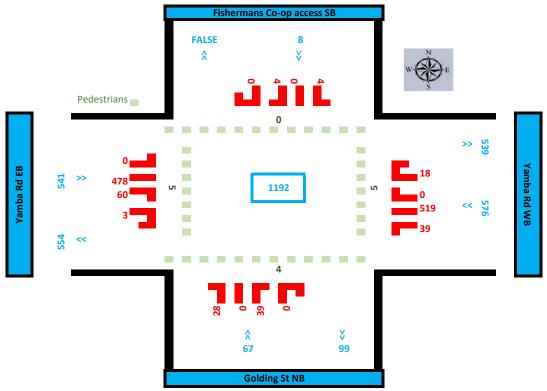


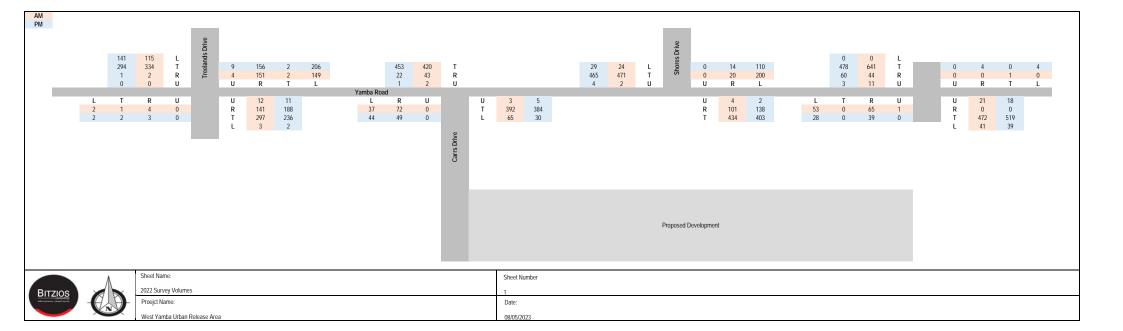


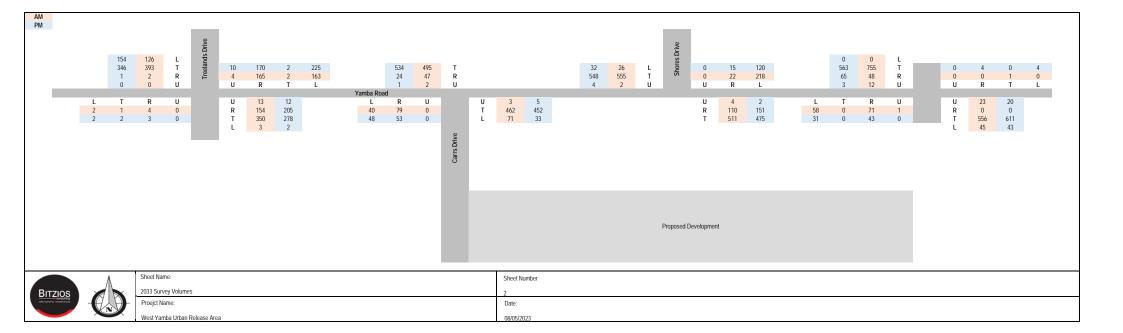


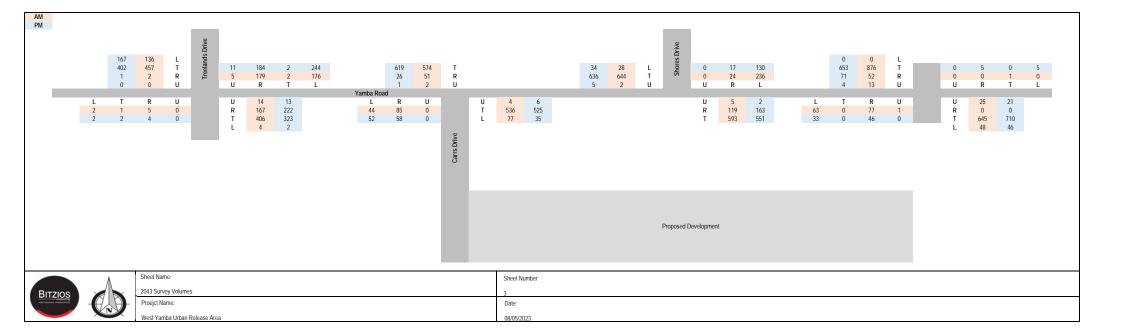


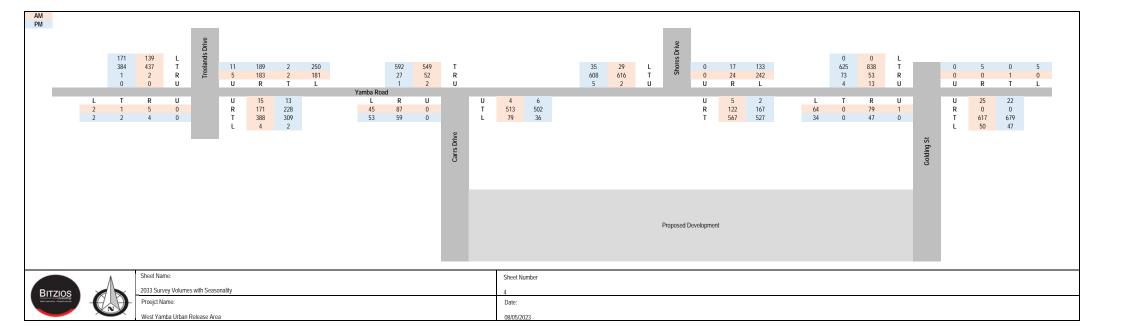


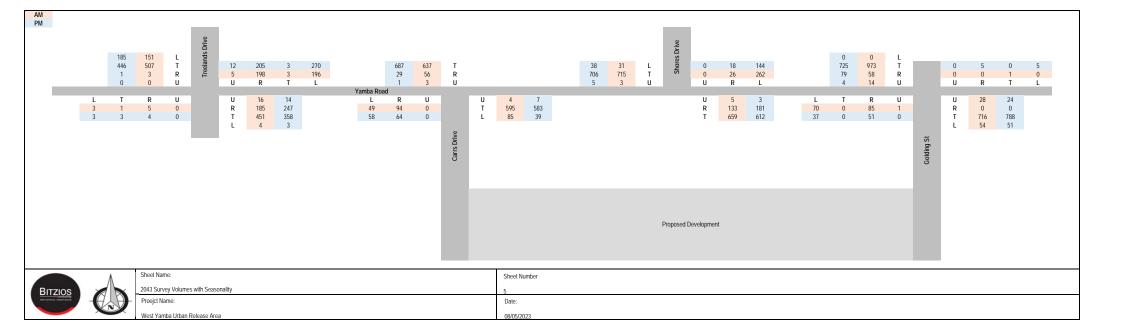


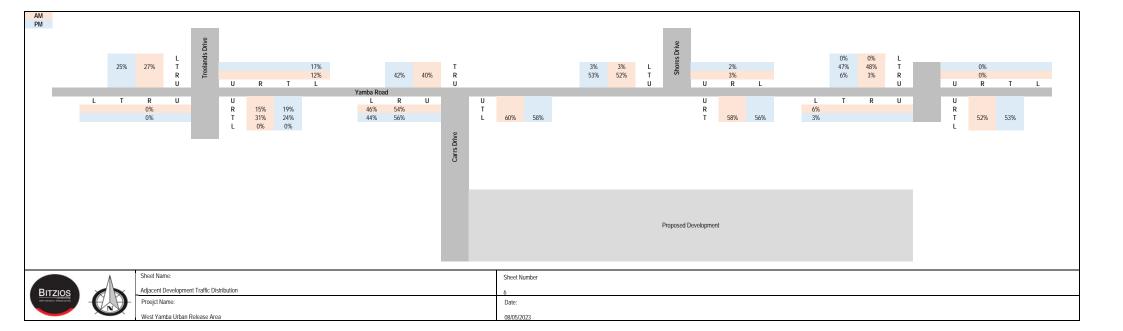


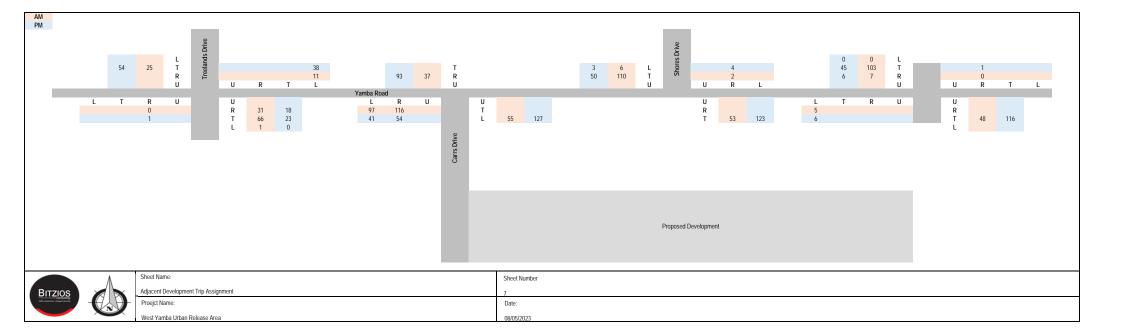


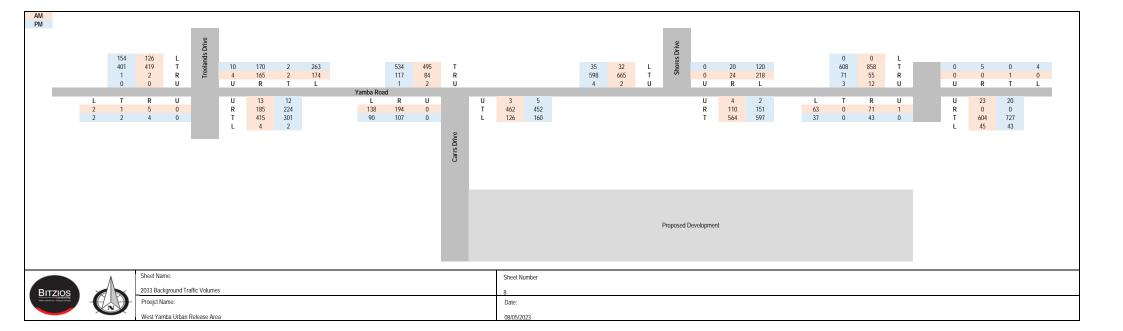


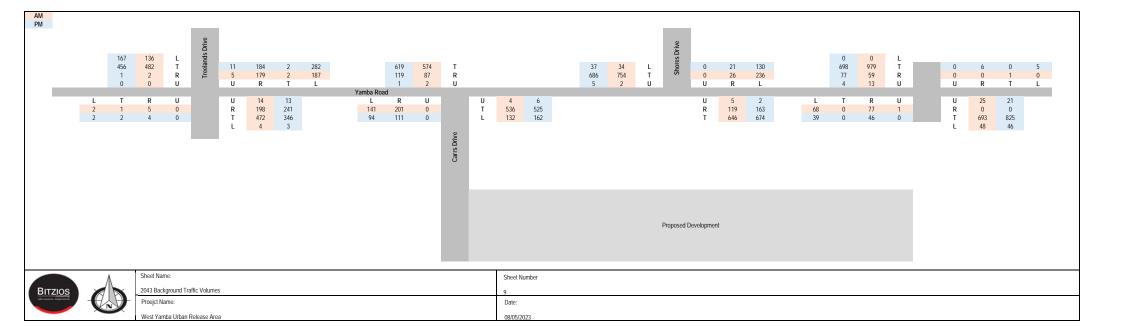

Appendix C: Network Diagrams

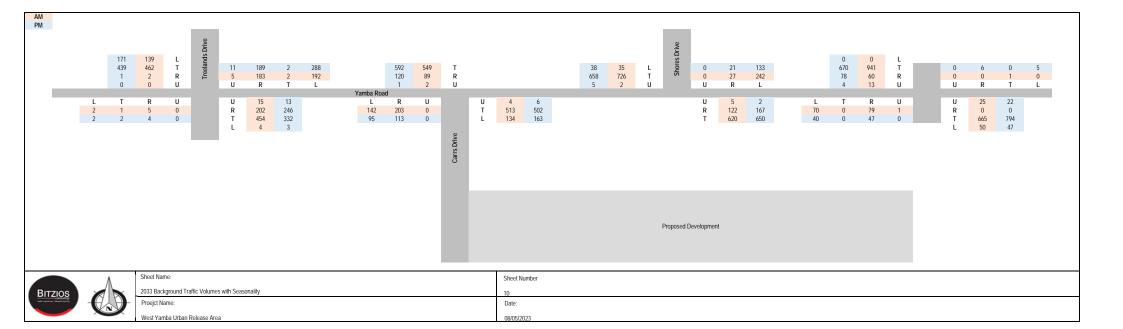


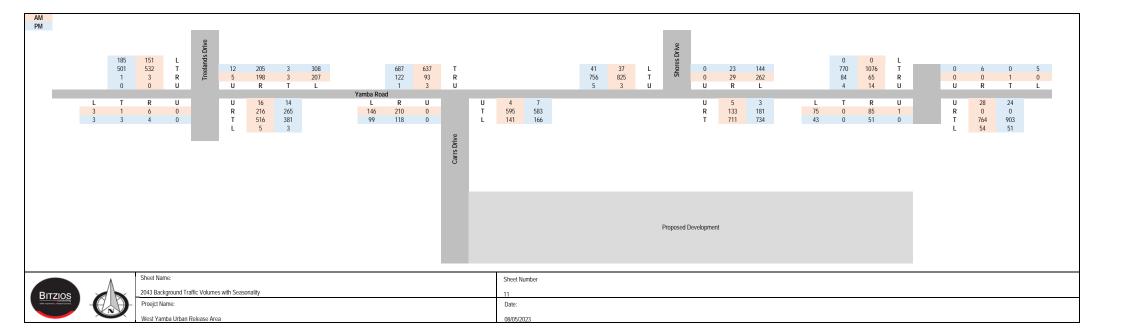


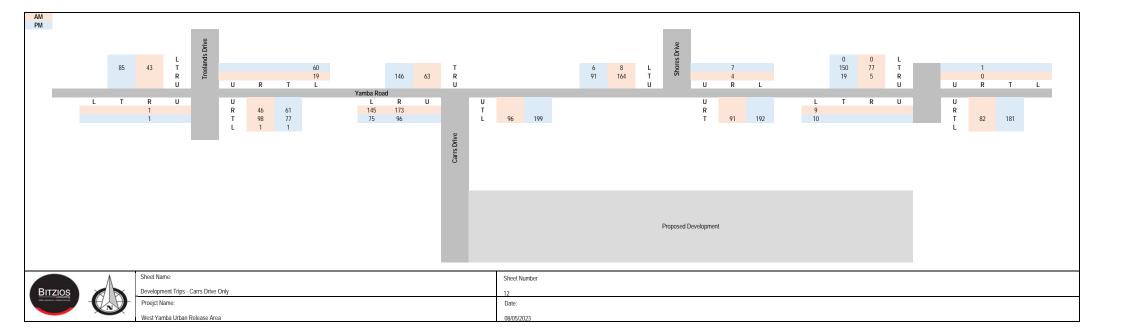


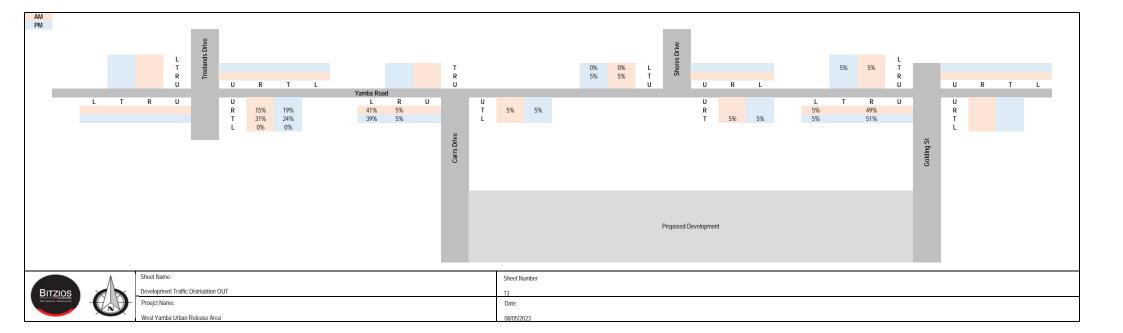


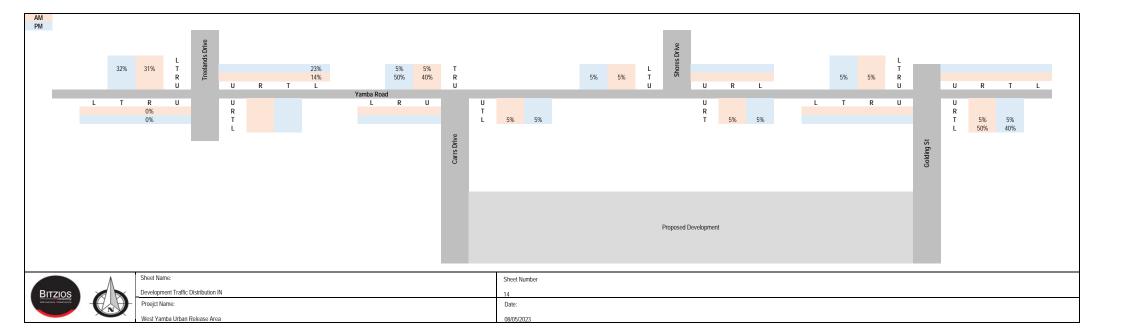


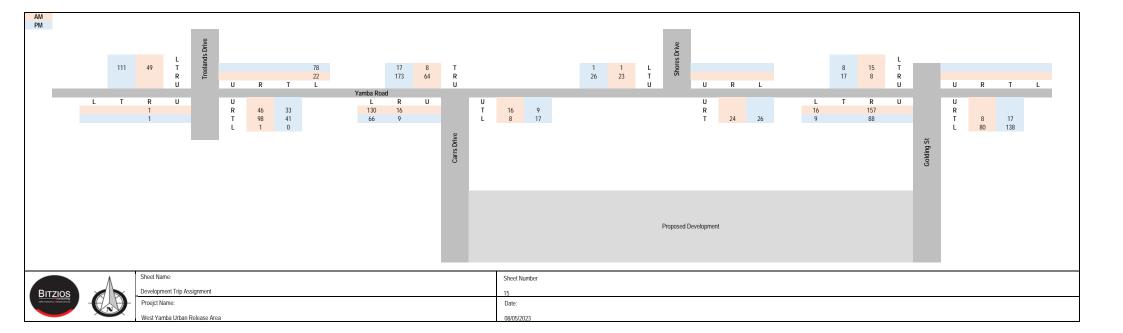


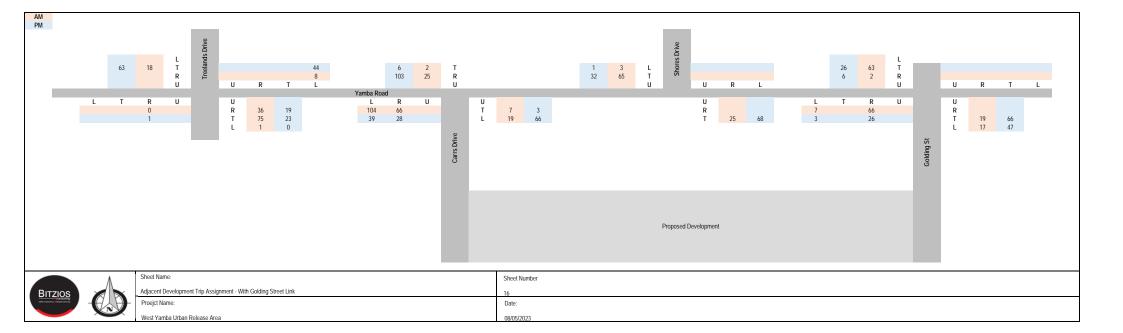


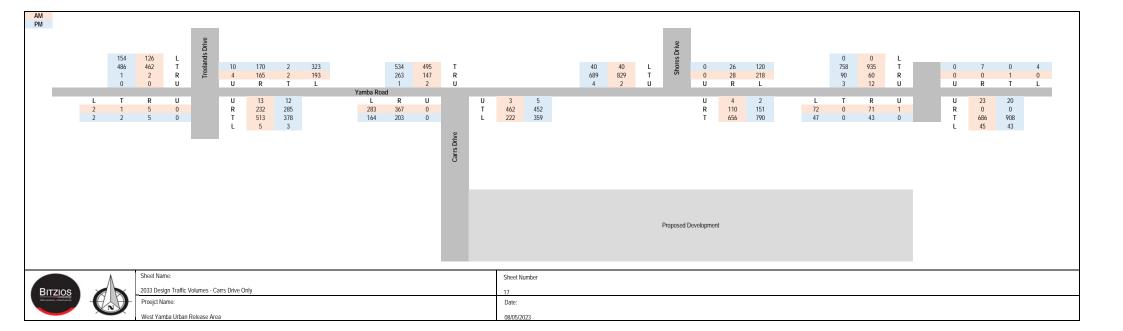


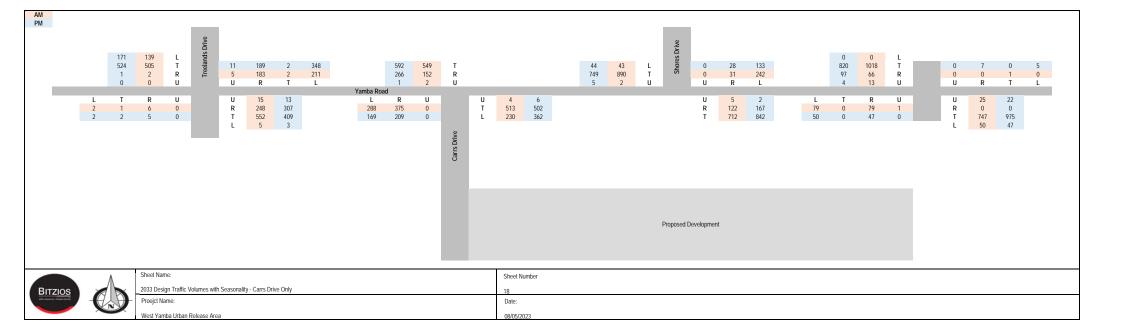


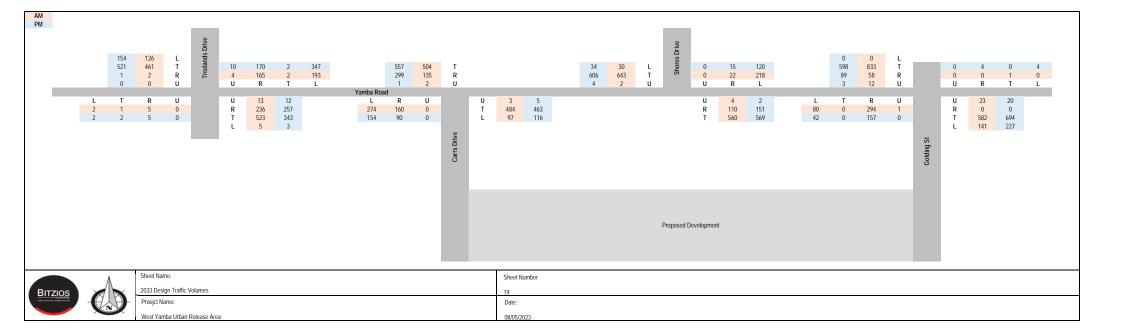


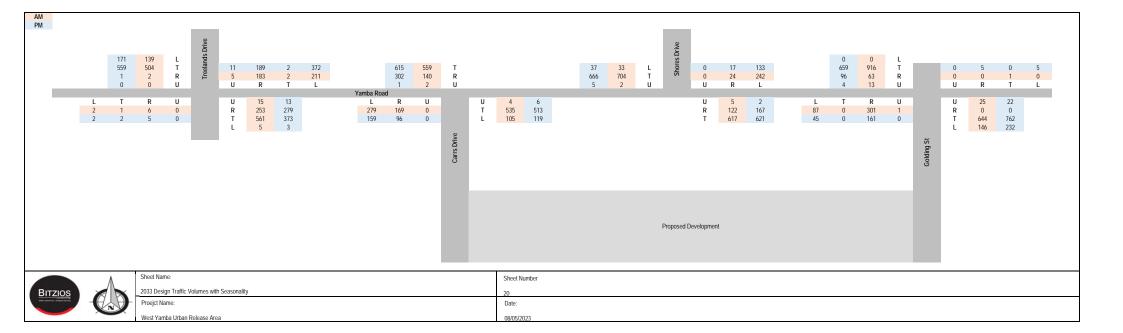


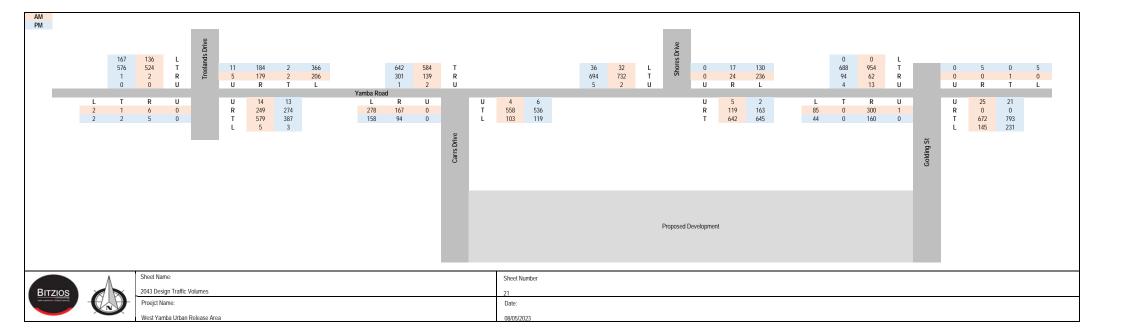


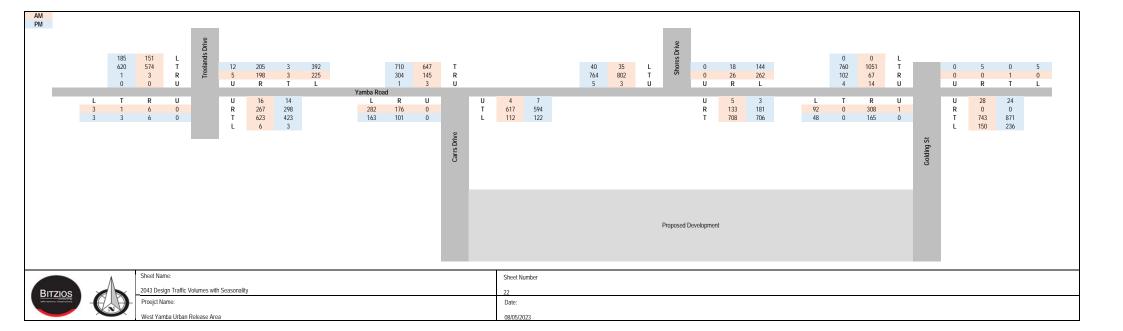




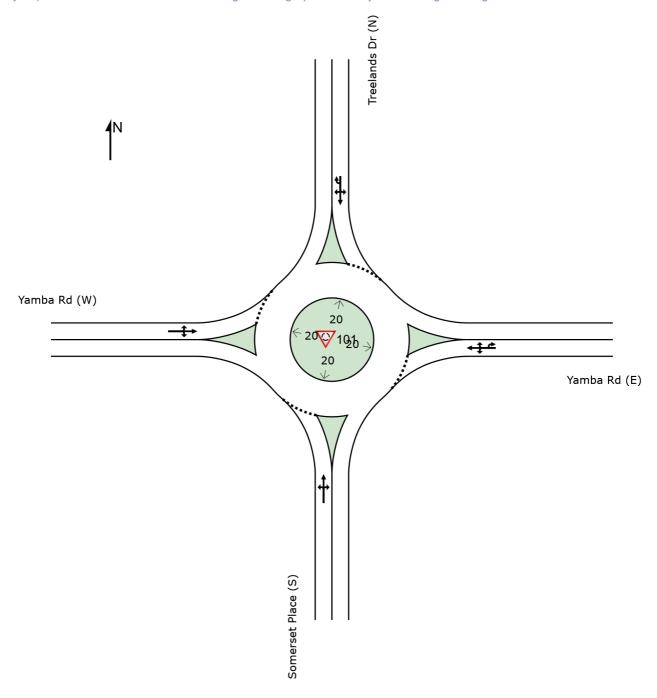








Appendix D: SIDRA Outputs



SITE LAYOUT

▽ Site: 101 [2033 BG AM (Site Folder: General)]

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Som	erset Plac	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.013	7.8	LOSA	0.1	0.6	0.76	0.65	0.76	40.2
2	T1	All MCs	1	0.0	1	0.0	0.013	7.7	LOSA	0.1	0.6	0.76	0.65	0.76	23.0
3	R2	All MCs	5	0.0	5	0.0	0.013	12.2	LOSA	0.1	0.6	0.76	0.65	0.76	37.0
Appro	oach		8	0.0	8	0.0	0.013	10.5	LOSA	0.1	0.6	0.76	0.65	0.76	36.1
East:	Yamba	a Rd (E)													
4	L2	All MCs	4	0.0	4	0.0	0.540	5.2	LOSA	4.8	34.7	0.59	0.55	0.59	41.1
5	T1	All MCs	437	6.4	437	6.4	0.540	5.6	LOSA	4.8	34.7	0.59	0.55	0.59	47.3
6	R2	All MCs	195	8.0	195	8.0	0.540	10.1	LOSA	4.8	34.7	0.59	0.55	0.59	31.8
6u	U	All MCs	14	0.0	14	0.0	0.540	12.2	LOSA	4.8	34.7	0.59	0.55	0.59	44.8
Appro	oach		649	4.5	649	4.5	0.540	7.1	LOSA	4.8	34.7	0.59	0.55	0.59	42.7
North	: Treel	ands Dr (N)												
7	L2	All MCs	183	4.0	183	4.0	0.408	7.1	LOSA	2.8	20.5	0.72	0.69	0.72	39.7
8	T1	All MCs	2	0.0	2	0.0	0.408	7.2	LOSA	2.8	20.5	0.72	0.69	0.72	33.2
9	R2	All MCs	174	4.0	174	4.0	0.408	12.0	LOSA	2.8	20.5	0.72	0.69	0.72	41.8
9u	U	All MCs	4	0.0	4	0.0	0.408	13.9	LOSA	2.8	20.5	0.72	0.69	0.72	23.3
Appro	oach		363	3.9	363	3.9	0.408	9.5	LOSA	2.8	20.5	0.72	0.69	0.72	40.6
West	: Yamb	a Rd (W)													
10	L2	All MCs	133	6.1	133	6.1	0.502	5.6	LOSA	4.0	29.5	0.59	0.53	0.59	44.9
11	T1	All MCs	441	6.0	441	6.0	0.502	5.8	LOSA	4.0	29.5	0.59	0.53	0.59	47.7
12	R2	All MCs	2	0.0	2	0.0	0.502	10.3	LOSA	4.0	29.5	0.59	0.53	0.59	44.3
Appro	oach		576	6.0	576	6.0	0.502	5.8	LOSA	4.0	29.5	0.59	0.53	0.59	47.2
All Ve	hicles		1597	4.9	1597	4.9	0.540	7.2	LOSA	4.8	34.7	0.62	0.57	0.62	43.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 101 [2033 BG PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows		rival ows HV]	Deg. Satn	Aver. Delay			ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m Î			<u> </u>	km/h
Sout	h: Som	erset Plac	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.012	7.0	LOSA	0.1	0.5	0.72	0.62	0.72	41.4
2	T1	All MCs	2	0.0	2	0.0	0.012	7.0	LOSA	0.1	0.5	0.72	0.62	0.72	23.7
3	R2	All MCs	4	0.0	4	0.0	0.012	11.5	LOSA	0.1	0.5	0.72	0.62	0.72	38.2
Appr	oach		8	0.0	8	0.0	0.012	9.2	LOSA	0.1	0.5	0.72	0.62	0.72	35.6
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.477	5.2	LOSA	3.9	28.1	0.56	0.56	0.56	40.9
5	T1	All MCs	317	3.8	317	3.8	0.477	5.5	LOSA	3.9	28.1	0.56	0.56	0.56	47.1
6	R2	All MCs	236	1.1	236	1.1	0.477	10.1	LOSA	3.9	28.1	0.56	0.56	0.56	31.7
6u	U	All MCs	13	0.0	13	0.0	0.477	12.1	LOSA	3.9	28.1	0.56	0.56	0.56	44.6
Appr	oach		568	2.6	568	2.6	0.477	7.5	LOSA	3.9	28.1	0.56	0.56	0.56	40.9
North	n: Treel	ands Dr (N)												
7	L2	All MCs	277	1.5	277	1.5	0.508	7.5	LOSA	4.1	29.2	0.76	0.71	0.80	40.0
8	T1	All MCs	2	0.0	2	0.0	0.508	7.7	LOSA	4.1	29.2	0.76	0.71	0.80	33.0
9	R2	All MCs	179	3.2	179	3.2	0.508	12.4	LOSA	4.1	29.2	0.76	0.71	0.80	41.8
9u	U	All MCs	11	0.0	11	0.0	0.508	14.4	LOSA	4.1	29.2	0.76	0.71	0.80	23.1
Appr	oach		468	2.1	468	2.1	0.508	9.5	LOSA	4.1	29.2	0.76	0.71	0.80	40.3
West	: Yamb	a Rd (W)													
10	L2	All MCs	162	6.4	162	6.4	0.527	6.0	LOSA	4.2	30.6	0.64	0.56	0.64	44.6
11	T1	All MCs	422	2.8	422	2.8	0.527	6.1	LOSA	4.2	30.6	0.64	0.56	0.64	47.9
12	R2	All MCs	1	0.0	1	0.0	0.527	10.7	LOSA	4.2	30.6	0.64	0.56	0.64	44.0
Appr	oach		585	3.8	585	3.8	0.527	6.1	LOSA	4.2	30.6	0.64	0.56	0.64	47.1
All Ve	ehicles		1631	2.9	1631	2.9	0.527	7.6	LOSA	4.2	30.6	0.65	0.60	0.66	43.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Friday, 5 May 2023 8:31:23 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Treelands Drive Intersection.sip9

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows		rival ows HV 1	Deg. Satn	Aver. Delay	Level of Service		ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m				km/h
South	h: Som	erset Plac	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.015	8.9	LOSA	0.1	0.7	0.82	0.67	0.82	39.1
2	T1	All MCs	1	0.0	1	0.0	0.015	8.8	LOSA	0.1	0.7	0.82	0.67	0.82	22.3
3	R2	All MCs	5	0.0	5	0.0	0.015	13.3	LOSA	0.1	0.7	0.82	0.67	0.82	35.9
Appr	oach		8	0.0	8	0.0	0.015	11.7	LOSA	0.1	0.7	0.82	0.67	0.82	35.1
East:	Yamba	a Rd (E)													
4	L2	All MCs	4	0.0	4	0.0	0.614	5.5	LOSA	6.0	43.5	0.67	0.57	0.67	40.6
5	T1	All MCs	497	6.4	497	6.4	0.614	5.9	LOSA	6.0	43.5	0.67	0.57	0.67	46.9
6	R2	All MCs	208	8.0	208	8.0	0.614	10.4	LOSA	6.0	43.5	0.67	0.57	0.67	31.5
6u	U	All MCs	15	0.0	15	0.0	0.614	12.4	LOSA	6.0	43.5	0.67	0.57	0.67	44.4
Appr	oach		724	4.6	724	4.6	0.614	7.3	LOSA	6.0	43.5	0.67	0.57	0.67	42.6
North	n: Treel	ands Dr (N)												
7	L2	All MCs	197	4.0	197	4.0	0.476	8.3	LOSA	3.7	26.9	0.80	0.74	0.85	38.4
8	T1	All MCs	2	0.0	2	0.0	0.476	8.3	LOSA	3.7	26.9	0.80	0.74	0.85	31.7
9	R2	All MCs	188	4.0	188	4.0	0.476	13.1	LOSA	3.7	26.9	0.80	0.74	0.85	40.6
9u	U	All MCs	5	0.0	5	0.0	0.476	15.0	LOS B	3.7	26.9	0.80	0.74	0.85	22.6
Appr	oach		393	3.9	393	3.9	0.476	10.7	LOSA	3.7	26.9	0.80	0.74	0.85	39.3
West	: Yamb	a Rd (W)													
10	L2	All MCs	143	6.1	143	6.1	0.578	5.9	LOSA	5.1	37.4	0.66	0.56	0.66	44.4
11	T1	All MCs	507	6.0	507	6.0	0.578	6.1	LOSA	5.1	37.4	0.66	0.56	0.66	47.3
12	R2	All MCs	2	0.0	2	0.0	0.578	10.5	LOSA	5.1	37.4	0.66	0.56	0.66	43.8
Appr	oach		653	6.0	653	6.0	0.578	6.0	LOSA	5.1	37.4	0.66	0.56	0.66	46.8
All Ve	ehicles		1778	5.0	1778	5.0	0.614	7.6	LOSA	6.0	43.5	0.70	0.60	0.71	43.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 101 [2043 BG PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None) Roundabout

Vehicle Movement Performance Turn Mov Arrival 95% Back Of Deg. Level of Prop. Class Flows Flows Satn Delay Service Queue Que No. of [Total HV] [Total HV] Rate [Veh. Dist] Cycles South: Somerset Place (S) 1 L2 All MCs 2 0.0 2 0.0 0.013 LOS A 0.77 0.64 0.77 40.6 7.8 0.1 0.6 2 T1 All MCs 2 0.0 2 0.0 0.013 7.8 LOS A 0.1 0.6 0.77 0.64 0.77 23.2 3 R2 All MCs 4 0.0 4 0.0 0.013 12.3 LOS A 0.1 0.6 0.77 0.64 0.77 37.4 Approach 8 0.0 8 0.0 0.013 10.0 LOS A 0.1 0.6 0.77 0.64 0.77 34.8 East: Yamba Rd (E) 0.543 0.63 0.58 0.63 L2 All MCs 3 0.0 3 0.0 5.4 LOS A 4.9 34.7 40.5 5 T1 All MCs 364 3.8 364 3.8 0.543 5.7 LOS A 4.9 34.7 0.63 0.58 0.63 46.8 6 R2 All MCs 10.3 LOS A 34.7 0.63 0.58 0.63 31.5 254 1.1 254 1.1 0.543 4.9 All MCs 14 0.0 14 0.0 0.543 12.3 LOS A 4.9 34.7 0.63 0.58 0.63 44.3 635 2.6 635 2.6 LOS A 0.58 0.63 Approach 0.543 7.7 4.9 34.7 0.63 40.9 North: Treelands Dr (N) 7 L2 All MCs 297 1.5 297 1.5 0.586 9.2 LOS A 5.6 39.9 0.85 0.79 0.99 38.0 2 0.0 8 T1 All MCs 2 0.0 0.586 9.4 LOS A 5.6 39.9 0.85 0.79 0.99 30.8 9 0.586 14.2 LOS A 39.9 0.85 0.79 0.99 40.0 R2 All MCs 194 3.2 194 3.2 5.6 9u U All MCs 12 0.0 12 0.0 0.586 16.1 LOS B 5.6 39.9 0.85 0.79 0.99 22.0 Approach 0.586 LOS A 0.85 0.99 504 2.1 504 2.1 11.3 5.6 39.9 0.79 38.5 West: Yamba Rd (W) L2 All MCs 176 6.4 0.604 6.7 LOS A 5.6 40.6 0.72 0.61 0.75 44.1 10 176 6.4 11 T1 All MCs 480 2.8 480 2.8 0.604 6.8 LOS A 5.6 40.6 0.72 0.61 0.75 47.5 12 R2 0.604 LOSA 40.6 0.72 0.61 0.75 43.4 All MCs 1 0.0 1 0.0 11.3 5.6 Approach 657 3.8 657 3.8 0.604 6.8 LOS A 5.6 40.6 0.72 0.61 0.75 46.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

8.4

LOSA

5.6

40.6

0.73

0.65

0.78

42.4

Vehicle movement LOS values are based on average delay per movement.

1804 2.9 1804 2.9

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

All Vehicles

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

0.604

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 101 [2033 BG AM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service		ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
0 41	0		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
		erset Pla	. ,		_										
1		All MCs		0.0	2	0.0	0.015	8.7	LOSA	0.1	0.7	0.82	0.67	0.82	39.3
2	T1	All MCs	1	0.0	1	0.0	0.015	8.7	LOSA	0.1	0.7	0.82	0.67	0.82	22.4
3	R2	All MCs	5	0.0	5	0.0	0.015	13.2	LOSA	0.1	0.7	0.82	0.67	0.82	36.0
Appro	oach		8	0.0	8	0.0	0.015	11.5	LOSA	0.1	0.7	0.82	0.67	0.82	35.3
East:	Yamba	a Rd (E)													
4	L2	All MCs	4	0.0	4	0.0	0.605	5.5	LOSA	5.8	42.1	0.67	0.57	0.67	40.6
5	T1	All MCs	478	6.4	478	6.4	0.605	5.9	LOSA	5.8	42.1	0.67	0.57	0.67	46.9
6	R2	All MCs	213	8.0	213	8.0	0.605	10.4	LOSA	5.8	42.1	0.67	0.57	0.67	31.5
6u	U	All MCs	16	0.0	16	0.0	0.605	12.4	LOSA	5.8	42.1	0.67	0.57	0.67	44.4
Appro	oach		711	4.5	711	4.5	0.605	7.4	LOSA	5.8	42.1	0.67	0.57	0.67	42.4
North	: Treel	ands Dr (N)												
7	L2	All MCs	202	4.0	202	4.0	0.478	8.1	LOSA	3.7	26.9	0.79	0.74	0.84	38.6
8	T1	All MCs	2	0.0	2	0.0	0.478	8.1	LOSA	3.7	26.9	0.79	0.74	0.84	31.9
9	R2	All MCs	193	4.0	193	4.0	0.478	12.9	LOSA	3.7	26.9	0.79	0.74	0.84	40.8
9u	U	All MCs	5	0.0	5	0.0	0.478	14.8	LOS B	3.7	26.9	0.79	0.74	0.84	22.7
Appro	oach		402	3.9	402	3.9	0.478	10.5	LOSA	3.7	26.9	0.79	0.74	0.84	39.5
West	: Yamb	a Rd (W)													
10	L2	All MCs	146	6.1	146	6.1	0.566	5.9	LOSA	4.9	36.0	0.66	0.56	0.66	44.5
11	T1	All MCs	486	6.0	486	6.0	0.566	6.1	LOSA	4.9	36.0	0.66	0.56	0.66	47.3
12	R2	All MCs	2	0.0	2	0.0	0.566	10.5	LOSA	4.9	36.0	0.66	0.56	0.66	43.8
Appro	oach		635	6.0	635	6.0	0.566	6.1	LOSA	4.9	36.0	0.66	0.56	0.66	46.8
All Ve	hicles		1756	4.9	1756	4.9	0.605	7.6	LOSA	5.8	42.1	0.70	0.60	0.71	43.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 101 [2033 BG PM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Som	erset Plac													
1	L2	All MCs	2	0.0	2	0.0	0.013	7.8	LOSA	0.1	0.6	0.77	0.64	0.77	40.7
2	T1	All MCs	2	0.0	2	0.0	0.013	7.7	LOSA	0.1	0.6	0.77	0.64	0.77	23.2
3	R2	All MCs	4	0.0	4	0.0	0.013	12.2	LOSA	0.1	0.6	0.77	0.64	0.77	37.4
Appro	oach		8	0.0	8	0.0	0.013	10.0	LOSA	0.1	0.6	0.77	0.64	0.77	34.9
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.538	5.4	LOSA	4.8	34.1	0.64	0.58	0.64	40.5
5	T1	All MCs	349	3.8	349	3.8	0.538	5.8	LOSA	4.8	34.1	0.64	0.58	0.64	46.8
6	R2	All MCs	259	1.1	259	1.1	0.538	10.3	LOSA	4.8	34.1	0.64	0.58	0.64	31.5
6u	U	All MCs	14	0.0	14	0.0	0.538	12.4	LOSA	4.8	34.1	0.64	0.58	0.64	44.3
Appro	oach		625	2.6	625	2.6	0.538	7.8	LOSA	4.8	34.1	0.64	0.58	0.64	40.6
North	: Treel	ands Dr (N)												
7	L2	All MCs	303	1.5	303	1.5	0.589	9.1	LOSA	5.6	40.2	0.85	0.78	0.98	38.2
8	T1	All MCs	2	0.0	2	0.0	0.589	9.2	LOSA	5.6	40.2	0.85	0.78	0.98	31.0
9	R2	All MCs	199	3.2	199	3.2	0.589	14.0	LOSA	5.6	40.2	0.85	0.78	0.98	40.2
9u	U	All MCs	12	0.0	12	0.0	0.589	15.9	LOS B	5.6	40.2	0.85	0.78	0.98	22.1
Appro	oach		516	2.1	516	2.1	0.589	11.1	LOSA	5.6	40.2	0.85	0.78	0.98	38.7
West:	: Yamb	a Rd (W)													
10	L2	All MCs	180	6.4	180	6.4	0.596	6.7	LOSA	5.4	39.4	0.72	0.61	0.75	44.1
11	T1	All MCs	462	2.8	462	2.8	0.596	6.8	LOSA	5.4	39.4	0.72	0.61	0.75	47.5
12	R2	All MCs	1	0.0	1	0.0	0.596	11.3	LOSA	5.4	39.4	0.72	0.61	0.75	43.5
Appro	oach		643	3.8	643	3.8	0.596	6.8	LOSA	5.4	39.4	0.72	0.61	0.75	46.7
All Ve	hicles		1793	2.9	1793	2.9	0.596	8.4	LOSA	5.6	40.2	0.73	0.65	0.77	42.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 101 [2043 BG AM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service		Back Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
0 41	0		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
		erset Pla	. ,		_										
1		All MCs		0.0	3	0.0	0.022	10.3	LOSA	0.1	1.0	0.88	0.71	0.88	38.0
2	T1	All MCs	1	0.0	1	0.0	0.022	10.2	LOSA	0.1	1.0	0.88	0.71	0.88	21.6
3	R2	All MCs	6	0.0	6	0.0	0.022	14.7	LOS B	0.1	1.0	0.88	0.71	0.88	34.7
Appro	oach		11	0.0	11	0.0	0.022	12.9	LOSA	0.1	1.0	0.88	0.71	0.88	34.5
East:	Yamba	a Rd (E)													
4	L2	All MCs	5	0.0	5	0.0	0.691	6.4	LOSA	8.0	58.3	0.78	0.62	0.81	39.9
5	T1	All MCs	543	6.4	543	6.4	0.691	6.8	LOSA	8.0	58.3	0.78	0.62	0.81	46.2
6	R2	All MCs	227	0.8	227	8.0	0.691	11.3	LOSA	8.0	58.3	0.78	0.62	0.81	31.1
6u	U	All MCs	17	0.0	17	0.0	0.691	13.3	LOSA	8.0	58.3	0.78	0.62	0.81	43.8
Appro	oach		793	4.6	793	4.6	0.691	8.2	LOSA	8.0	58.3	0.78	0.62	0.81	42.0
North	ı: Treel	ands Dr (N)												
7	L2	All MCs	218	4.0	218	4.0	0.571	10.4	LOSA	5.3	38.7	0.89	0.83	1.06	36.2
8	T1	All MCs	3	0.0	3	0.0	0.571	10.5	LOSA	5.3	38.7	0.89	0.83	1.06	29.3
9	R2	All MCs	208	4.0	208	4.0	0.571	15.3	LOS B	5.3	38.7	0.89	0.83	1.06	38.6
9u	U	All MCs	5	0.0	5	0.0	0.571	17.2	LOS B	5.3	38.7	0.89	0.83	1.06	21.3
Appro	oach		435	3.9	435	3.9	0.571	12.8	LOSA	5.3	38.7	0.89	0.83	1.06	37.2
West	: Yamb	a Rd (W)													
10	L2	All MCs	159	6.1	159	6.1	0.657	6.8	LOSA	7.0	51.4	0.76	0.62	0.81	43.8
11	T1	All MCs	560	6.0	560	6.0	0.657	7.1	LOSA	7.0	51.4	0.76	0.62	0.81	46.7
12	R2	All MCs	3	0.0	3	0.0	0.657	11.5	LOSA	7.0	51.4	0.76	0.62	0.81	43.1
Appro	oach		722	6.0	722	6.0	0.657	7.0	LOSA	7.0	51.4	0.76	0.62	0.81	46.2
All Ve	ehicles		1960	4.9	1960	4.9	0.691	8.8	LOSA	8.0	58.3	0.80	0.67	0.87	42.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Friday, 5 May 2023 8:31:27 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Treelands Drive Intersection.sip9

▼ Site: 101 [2043 BG PM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows		rival ows HV]	Deg. Satn	Aver. Delay			ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m Î			<u> </u>	km/h
Sout	h: Som	erset Plac	ce (S)												
1	L2	All MCs	3	0.0	3	0.0	0.019	8.9	LOSA	0.1	0.9	0.83	0.68	0.83	39.9
2	T1	All MCs	3	0.0	3	0.0	0.019	8.9	LOSA	0.1	0.9	0.83	0.68	0.83	22.6
3	R2	All MCs	4	0.0	4	0.0	0.019	13.4	LOSA	0.1	0.9	0.83	0.68	0.83	36.7
Appr	oach		11	0.0	11	0.0	0.019	10.7	LOSA	0.1	0.9	0.83	0.68	0.83	33.7
East	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.615	5.8	LOSA	6.0	42.9	0.73	0.60	0.73	40.0
5	T1	All MCs	401	3.8	401	3.8	0.615	6.1	LOSA	6.0	42.9	0.73	0.60	0.73	46.4
6	R2	All MCs	279	1.1	279	1.1	0.615	10.6	LOSA	6.0	42.9	0.73	0.60	0.73	31.2
6u	U	All MCs	15	0.0	15	0.0	0.615	12.7	LOSA	6.0	42.9	0.73	0.60	0.73	43.9
Appr	oach		698	2.6	698	2.6	0.615	8.0	LOSA	6.0	42.9	0.73	0.60	0.73	40.5
North	n: Treel	ands Dr (N)												
7	L2	All MCs	324	1.5	324	1.5	0.689	12.0	LOSA	8.1	57.6	0.95	0.89	1.24	35.3
8	T1	All MCs	3	0.0	3	0.0	0.689	12.2	LOSA	8.1	57.6	0.95	0.89	1.24	27.9
9	R2	All MCs	216	3.2	216	3.2	0.689	17.0	LOS B	8.1	57.6	0.95	0.89	1.24	37.5
9u	U	All MCs	13	0.0	13	0.0	0.689	18.9	LOS B	8.1	57.6	0.95	0.89	1.24	20.5
Appr	oach		556	2.1	556	2.1	0.689	14.1	LOSA	8.1	57.6	0.95	0.89	1.24	35.8
West	: Yamb	a Rd (W)													
10	L2	All MCs	195	6.4	195	6.4	0.687	8.3	LOSA	8.0	57.6	0.82	0.70	0.93	43.2
11	T1	All MCs	527	2.8	527	2.8	0.687	8.4	LOSA	8.0	57.6	0.82	0.70	0.93	46.7
12	R2	All MCs	1	0.0	1	0.0	0.687	12.9	LOSA	8.0	57.6	0.82	0.70	0.93	42.6
Appr	oach		723	3.8	723	3.8	0.687	8.3	LOSA	8.0	57.6	0.82	0.70	0.93	45.9
All Ve	ehicles		1987	2.9	1987	2.9	0.689	9.9	LOSA	8.1	57.6	0.82	0.72	0.95	41.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2033 DES AM - Carrs Access Only (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service	95% B Que [Veh.	eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
South	n: Som	erset Plac	veh/h	%	veh/h	%	v/c	sec		veh	m	_	_		km/h
1		All MCs	()	0.0	2	0.0	0.016	9.8	LOSA	0.1	0.8	0.86	0.69	0.86	38.3
2	T1	All MCs		0.0	1		0.016	9.7	LOSA	0.1	0.8	0.86	0.69	0.86	21.8
3	R2	All MCs		0.0	5	0.0	0.016	14.2	LOSA	0.1	0.8	0.86	0.69	0.86	35.1
Appro		7		0.0	8		0.016	12.6	LOSA	0.1	0.8	0.86	0.69	0.86	34.3
East:	Yamba	a Rd (E)													
4	L2	All MCs	5	0.0	5	0.0	0.663	5.5	LOSA	7.0	51.1	0.70	0.57	0.70	40.4
5	T1	All MCs	540	6.4	540	6.4	0.663	5.9	LOSA	7.0	51.1	0.70	0.57	0.70	46.7
6	R2	All MCs	244	8.0	244	8.0	0.663	10.4	LOSA	7.0	51.1	0.70	0.57	0.70	31.4
6u	U	All MCs	14	0.0	14	0.0	0.663	12.4	LOSA	7.0	51.1	0.70	0.57	0.70	44.3
Appro	oach		803	4.5	803	4.5	0.663	7.4	LOSA	7.0	51.1	0.70	0.57	0.70	42.2
North	: Treel	ands Dr (N)												
7	L2	All MCs	203	4.0	203	4.0	0.458	7.8	LOSA	3.4	24.9	0.79	0.72	0.81	39.0
8	T1	All MCs	2	0.0	2	0.0	0.458	7.9	LOSA	3.4	24.9	0.79	0.72	0.81	32.4
9	R2	All MCs	174	4.0	174	4.0	0.458	12.6	LOSA	3.4	24.9	0.79	0.72	0.81	41.2
9u	U	All MCs	4	0.0	4	0.0	0.458	14.6	LOS B	3.4	24.9	0.79	0.72	0.81	22.9
Appro	oach		383	3.9	383	3.9	0.458	10.1	LOSA	3.4	24.9	0.79	0.72	0.81	39.9
West	: Yamb	a Rd (W)													
10	L2	All MCs	133	6.1	133	6.1	0.574	6.1	LOSA	5.0	36.4	0.70	0.58	0.70	44.2
11	T1	All MCs	486	6.0	486	6.0	0.574	6.3	LOSA	5.0	36.4	0.70	0.58	0.70	47.1
12	R2	All MCs	2	0.0	2	0.0	0.574	10.8	LOSA	5.0	36.4	0.70	0.58	0.70	43.5
Appro	oach		621	6.0	621	6.0	0.574	6.3	LOSA	5.0	36.4	0.70	0.58	0.70	46.6
All Ve	hicles		1816	4.9	1816	4.9	0.663	7.6	LOSA	7.0	51.1	0.72	0.60	0.72	43.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2033 DES PM - Carrs Access Only (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay	Level of Service	Qι [Veh.	Back Of leue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
South	n: Som	erset Pla		70	ven/n	70	V/C	sec	_	veh	m			_	km/h
1		All MCs	` ,	0.0	2	0.0	0.015	7.9	LOSA	0.1	0.6	0.77	0.66	0.77	40.4
2		All MCs		0.0		0.0	0.015	7.8	LOSA	0.1	0.6	0.77	0.66	0.77	23.2
3		All MCs		0.0		0.0	0.015	12.3	LOSA	0.1	0.6	0.77	0.66	0.77	37.2
Appro				0.0	9		0.015	10.3	LOSA	0.1	0.6	0.77	0.66	0.77	34.9
East:	Yamba	a Rd (E)													
4		All MCs	3	0.0	3	0.0	0.577	5.2	LOSA	5.1	36.5	0.59	0.57	0.59	40.7
5	T1	All MCs	398	3.8	398	3.8	0.577	5.5	LOSA	5.1	36.5	0.59	0.57	0.59	47.0
6	R2	All MCs	300	1.1	300	1.1	0.577	10.0	LOSA	5.1	36.5	0.59	0.57	0.59	31.6
6u	U	All MCs	13	0.0	13	0.0	0.577	12.1	LOSA	5.1	36.5	0.59	0.57	0.59	44.5
Appro	oach		714	2.6	714	2.6	0.577	7.5	LOSA	5.1	36.5	0.59	0.57	0.59	40.7
North	: Treel	ands Dr (N)												
7	L2	All MCs	340	1.5	340	1.5	0.599	9.0	LOSA	5.6	40.2	0.84	0.80	0.99	38.5
8	T1	All MCs	2	0.0	2	0.0	0.599	9.2	LOSA	5.6	40.2	0.84	0.80	0.99	31.3
9	R2	All MCs	179	3.2	179	3.2	0.599	13.9	LOSA	5.6	40.2	0.84	0.80	0.99	40.0
9u	U	All MCs	11	0.0	11	0.0	0.599	15.9	LOS B	5.6	40.2	0.84	0.80	0.99	22.3
Appro	oach		532	2.0	532	2.0	0.599	10.8	LOSA	5.6	40.2	0.84	0.80	0.99	38.7
West	: Yamb	a Rd (W)													
10	L2	All MCs	162	6.4	162	6.4	0.620	7.0	LOSA	5.7	41.1	0.72	0.64	0.78	44.0
11	T1	All MCs	512	2.7	512	2.7	0.620	7.1	LOSA	5.7	41.1	0.72	0.64	0.78	47.4
12	R2	All MCs	1	0.0	1	0.0	0.620	11.7	LOSA	5.7	41.1	0.72	0.64	0.78	43.4
Appro	oach		675	3.6	675	3.6	0.620	7.1	LOSA	5.7	41.1	0.72	0.64	0.78	46.7
All Ve	ehicles		1929	2.8	1929	2.8	0.620	8.3	LOSA	5.7	41.1	0.71	0.66	0.77	42.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 101 [2033 DES AM Seasonality - Carrs Access Only (Site)

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None)

Roundabout

Vehi		ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	FI			rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Som	erset Pla		70	ven/n	70	V/C	sec	_	ven	m			_	KIII/II
1		All MCs	• • •	0.0	2	0.0	0.022	11.3	LOSA	0.2	1.1	0.91	0.73	0.91	37.0
2	T1			0.0		0.0	0.022	11.2	LOSA	0.2	1.1	0.91	0.73	0.91	21.0
3	R2	All MCs		0.0		0.0	0.022	15.7	LOS B	0.2	1.1	0.91	0.73	0.91	33.7
Appr				0.0		0.0	0.022	14.2	LOSA	0.2	1.1	0.91	0.73	0.91	33.1
East:	Yamba	a Rd (E)													
4		All MCs	5	0.0	5	0.0	0.731	6.5	LOSA	9.4	68.0	0.81	0.62	0.84	39.7
5	T1	All MCs	581	6.4	581	6.4	0.731	7.0	LOSA	9.4	68.0	0.81	0.62	0.84	46.1
6	R2	All MCs	261	0.8	261	0.8	0.731	11.4	LOSA	9.4	68.0	0.81	0.62	0.84	31.0
6u	U	All MCs	16	0.0	16	0.0	0.731	13.5	LOSA	9.4	68.0	0.81	0.62	0.84	43.6
Appr	oach		863	4.6	863	4.6	0.731	8.4	LOSA	9.4	68.0	0.81	0.62	0.84	41.6
North	n: Treel	ands Dr (N)												
7	L2	All MCs	222	4.0	222	4.0	0.538	9.4	LOSA	4.8	34.4	0.86	0.79	0.98	37.3
8	T1	All MCs	2	0.0	2	0.0	0.538	9.5	LOSA	4.8	34.4	0.86	0.79	0.98	30.4
9	R2	All MCs	193	4.0	193	4.0	0.538	14.3	LOSA	4.8	34.4	0.86	0.79	0.98	39.6
9u	U	All MCs	5	0.0	5	0.0	0.538	16.2	LOS B	4.8	34.4	0.86	0.79	0.98	21.9
Appr	oach		422	3.9	422	3.9	0.538	11.7	LOSA	4.8	34.4	0.86	0.79	0.98	38.2
West	: Yamb	a Rd (W)													
10	L2	All MCs	146	6.1	146	6.1	0.645	7.3	LOSA	6.8	49.9	0.78	0.65	0.84	43.6
11	T1	All MCs	532	6.0	532	6.0	0.645	7.5	LOSA	6.8	49.9	0.78	0.65	0.84	46.6
12	R2	All MCs	2	0.0	2	0.0	0.645	11.9	LOSA	6.8	49.9	0.78	0.65	0.84	43.0
Appr	oach		680	6.0	680	6.0	0.645	7.4	LOSA	6.8	49.9	0.78	0.65	0.84	46.1
All Ve	ehicles		1975	4.9	1975	4.9	0.731	8.8	LOSA	9.4	68.0	0.81	0.67	0.87	42.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 101 [2033 DES PM Seasonality - Carrs Access Only (Site)

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	h: Som	erset Pla		70	VO11//11	70	V/ O			٧٥١١					KITI/TI
1	L2	All MCs	2	0.0	2	0.0	0.017	8.9	LOSA	0.1	0.8	0.83	0.68	0.83	39.4
2	T1	All MCs	2	0.0	2	0.0	0.017	8.8	LOSA	0.1	0.8	0.83	0.68	0.83	22.6
3	R2	All MCs	5	0.0	5	0.0	0.017	13.3	LOSA	0.1	0.8	0.83	0.68	0.83	36.2
Appr	oach		9	0.0	9	0.0	0.017	11.3	LOSA	0.1	8.0	0.83	0.68	0.83	34.1
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.639	5.4	LOSA	6.2	44.0	0.68	0.59	0.68	40.2
5	T1	All MCs	431	3.8	431	3.8	0.639	5.8	LOSA	6.2	44.0	0.68	0.59	0.68	46.6
6	R2	All MCs	323	1.1	323	1.1	0.639	10.3	LOSA	6.2	44.0	0.68	0.59	0.68	31.3
6u	U	All MCs	14	0.0	14	0.0	0.639	12.4	LOSA	6.2	44.0	0.68	0.59	0.68	44.1
Appr	oach		771	2.6	771	2.6	0.639	7.8	LOSA	6.2	44.0	0.68	0.59	0.68	40.3
North	n: Treel	ands Dr (N)												
7	L2	All MCs	366	1.5	366	1.5	0.692	11.3	LOSA	7.8	55.7	0.93	0.89	1.21	36.2
8	T1	All MCs	2	0.0	2	0.0	0.692	11.5	LOSA	7.8	55.7	0.93	0.89	1.21	28.8
9	R2	All MCs	199	3.2	199	3.2	0.692	16.2	LOS B	7.8	55.7	0.93	0.89	1.21	37.9
9u	U	All MCs	12	0.0	12	0.0	0.692	18.2	LOS B	7.8	55.7	0.93	0.89	1.21	21.0
Appr	oach		579	2.0	579	2.0	0.692	13.1	LOSA	7.8	55.7	0.93	0.89	1.21	36.5
West	:: Yamb	a Rd (W)													
10	L2	All MCs	180	6.4	180	6.4	0.692	8.3	LOSA	7.7	55.3	0.81	0.72	0.94	43.2
11	T1	All MCs	552	2.7	552	2.7	0.692	8.4	LOSA	7.7	55.3	0.81	0.72	0.94	46.7
12	R2	All MCs	1	0.0	1	0.0	0.692	12.9	LOSA	7.7	55.3	0.81	0.72	0.94	42.6
Appr	oach		733	3.6	733	3.6	0.692	8.4	LOSA	7.7	55.3	0.81	0.72	0.94	46.0
All Ve	ehicles		2092	2.8	2092	2.8	0.692	9.5	LOSA	7.8	55.7	0.80	0.72	0.92	41.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Friday, 5 May 2023 8:31:30 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Treelands Drive Intersection.sip9

♥ Site: 101 [2033 DES AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Som	erset Plac	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.017	10.0	LOSA	0.1	8.0	0.87	0.70	0.87	38.1
2	T1	All MCs	1	0.0	1	0.0	0.017	10.0	LOSA	0.1	8.0	0.87	0.70	0.87	21.7
3	R2	All MCs	5	0.0	5	0.0	0.017	14.5	LOSA	0.1	8.0	0.87	0.70	0.87	34.9
Appro	oach		8	0.0	8	0.0	0.017	12.8	LOSA	0.1	8.0	0.87	0.70	0.87	34.1
East:	Yamba	a Rd (E)													
4	L2	All MCs	5	0.0	5	0.0	0.675	5.5	LOSA	7.3	53.0	0.71	0.57	0.71	40.4
5	T1	All MCs	551	6.4	551	6.4	0.675	5.9	LOSA	7.3	53.0	0.71	0.57	0.71	46.7
6	R2	All MCs	248	0.8	248	8.0	0.675	10.4	LOSA	7.3	53.0	0.71	0.57	0.71	31.4
6u	U	All MCs	14	0.0	14	0.0	0.675	12.5	LOSA	7.3	53.0	0.71	0.57	0.71	44.2
Appro	oach		818	4.6	818	4.6	0.675	7.4	LOSA	7.3	53.0	0.71	0.57	0.71	42.2
North	: Treel	ands Dr (N)												
7	L2	All MCs	203	4.0	203	4.0	0.458	7.8	LOSA	3.4	24.9	0.79	0.72	0.81	39.0
8	T1	All MCs	2	0.0	2	0.0	0.458	7.9	LOSA	3.4	24.9	0.79	0.72	0.81	32.4
9	R2	All MCs	174	4.0	174	4.0	0.458	12.6	LOSA	3.4	24.9	0.79	0.72	0.81	41.2
9u	U	All MCs	4	0.0	4	0.0	0.458	14.6	LOS B	3.4	24.9	0.79	0.72	0.81	22.9
Appro	oach		383	3.9	383	3.9	0.458	10.0	LOSA	3.4	24.9	0.79	0.72	0.81	39.9
West	: Yamb	a Rd (W)													
10	L2	All MCs	133	6.1	133	6.1	0.576	6.2	LOSA	5.0	37.0	0.70	0.58	0.71	44.2
11	T1	All MCs	485	6.0	485	6.0	0.576	6.4	LOSA	5.0	37.0	0.70	0.58	0.71	47.1
12	R2	All MCs	2	0.0	2	0.0	0.576	10.9	LOSA	5.0	37.0	0.70	0.58	0.71	43.5
Appro	oach		620	6.0	620	6.0	0.576	6.4	LOSA	5.0	37.0	0.70	0.58	0.71	46.5
All Ve	hicles		1829	4.9	1829	4.9	0.675	7.6	LOSA	7.3	53.0	0.72	0.61	0.73	43.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2033 DES PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows		rival ows HV 1	Deg. Satn	Aver. Delay	Level of Service		ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m ¹			- /	km/h
Sout	h: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.013	7.2	LOSA	0.1	0.6	0.73	0.64	0.73	41.1
2	T1	All MCs	2	0.0	2	0.0	0.013	7.1	LOSA	0.1	0.6	0.73	0.64	0.73	23.6
3	R2	All MCs	5	0.0	5	0.0	0.013	11.6	LOSA	0.1	0.6	0.73	0.64	0.73	37.9
Appr			9	0.0	9	0.0	0.013	9.6	LOSA	0.1	0.6	0.73	0.64	0.73	35.6
East:		a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.527	5.1	LOSA	4.4	31.5	0.57	0.57	0.57	40.8
5	T1	All MCs	361	3.8	361	3.8	0.527	5.4	LOSA	4.4	31.5	0.57	0.57	0.57	47.1
6	R2	All MCs	271	1.1	271	1.1	0.527	10.0	LOSA	4.4	31.5	0.57	0.57	0.57	31.7
6u	U	All MCs	13	0.0	13	0.0	0.527	12.0	LOSA	4.4	31.5	0.57	0.57	0.57	44.6
Appr			647	2.6	647	2.6	0.527	7.4	LOSA	4.4	31.5	0.57	0.57	0.57	40.8
		ands Dr (,												
7	L2	All MCs	365	1.5	365	1.5	0.649	10.3	LOSA	6.7	47.9	0.89	0.85	1.11	37.2
8	T1	All MCs	2	0.0	2	0.0	0.649	10.5	LOSA	6.7	47.9	0.89	0.85	1.11	29.8
9	R2	All MCs	179	3.2	179	3.2	0.649	15.3	LOS B	6.7	47.9	0.89	0.85	1.11	38.8
9u	U	All MCs	11	0.0	11	0.0	0.649	17.3	LOS B	6.7	47.9	0.89	0.85	1.11	21.5
Appr	oach		557	2.0	557	2.0	0.649	12.1	LOSA	6.7	47.9	0.89	0.85	1.11	37.4
West	: Yamb	a Rd (W)													
10	L2	All MCs	162	6.4	162	6.4	0.632	6.8	LOSA	5.9	42.5	0.70	0.63	0.75	44.1
11	T1	All MCs	548	2.7	548	2.7	0.632	6.9	LOSA	5.9	42.5	0.70	0.63	0.75	47.5
12	R2	All MCs	1	0.0	1	0.0	0.632	11.4	LOSA	5.9	42.5	0.70	0.63	0.75	43.5
Appr	oach		712	3.5	712	3.5	0.632	6.9	LOSA	5.9	42.5	0.70	0.63	0.75	46.8
All Ve	ehicles		1925	2.8	1925	2.8	0.649	8.6	LOSA	6.7	47.9	0.71	0.67	0.79	42.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2033 DES AM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	icle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service	Qu [Veh.	Back Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
Caudi	h. Cama	arast Dia	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
		erset Pla	. ,												
1		All MCs		0.0		0.0	0.022	11.6	LOSA	0.2	1.1	0.92	0.73	0.92	36.7
2	T1	All MCs	1	0.0	1	0.0	0.022	11.5	LOSA	0.2	1.1	0.92	0.73	0.92	20.9
3		All MCs	6	0.0	6	0.0	0.022	16.0	LOS B	0.2	1.1	0.92	0.73	0.92	33.5
Appr	oach		9	0.0	9	0.0	0.022	14.5	LOS B	0.2	1.1	0.92	0.73	0.92	32.9
East	Yamba	a Rd (E)													
4	L2	All MCs	5	0.0	5	0.0	0.743	6.7	LOSA	9.8	71.6	0.82	0.63	0.87	39.5
5	T1	All MCs	591	6.4	591	6.4	0.743	7.1	LOSA	9.8	71.6	0.82	0.63	0.87	46.0
6	R2	All MCs	266	0.8	266	8.0	0.743	11.6	LOSA	9.8	71.6	0.82	0.63	0.87	30.9
6u	U	All MCs	16	0.0	16	0.0	0.743	13.6	LOSA	9.8	71.6	0.82	0.63	0.87	43.5
Appr	oach		878	4.5	878	4.5	0.743	8.6	LOSA	9.8	71.6	0.82	0.63	0.87	41.5
North	n: Treel	ands Dr (N)												
7	L2	All MCs	222	4.0	222	4.0	0.538	9.4	LOSA	4.8	34.5	0.86	0.79	0.98	37.3
8	T1	All MCs	2	0.0	2	0.0	0.538	9.5	LOSA	4.8	34.5	0.86	0.79	0.98	30.4
9	R2	All MCs	193	4.0	193	4.0	0.538	14.3	LOSA	4.8	34.5	0.86	0.79	0.98	39.6
9u	U	All MCs	5	0.0	5	0.0	0.538	16.2	LOS B	4.8	34.5	0.86	0.79	0.98	21.9
Appr	oach		422	3.9	422	3.9	0.538	11.7	LOSA	4.8	34.5	0.86	0.79	0.98	38.2
West	t: Yamb	a Rd (W)													
10	L2	All MCs	146	6.1	146	6.1	0.649	7.4	LOSA	6.9	50.7	0.79	0.65	0.86	43.5
11	T1	All MCs	531	6.0	531	6.0	0.649	7.6	LOSA	6.9	50.7	0.79	0.65	0.86	46.5
12	R2	All MCs	2	0.0	2	0.0	0.649	12.0	LOSA	6.9	50.7	0.79	0.65	0.86	42.9
Appr	oach		679	6.0	679	6.0	0.649	7.6	LOSA	6.9	50.7	0.79	0.65	0.86	46.0
All Ve	ehicles		1988	4.9	1988	4.9	0.743	8.9	LOSA	9.8	71.6	0.82	0.67	0.89	42.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Friday, 5 May 2023 8:31:32 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Treelands Drive Intersection.sip9

♥ Site: 101 [2033 DES PM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service		ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
0 "		4 DI	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
		erset Pla	. ,		_										
1		All MCs		0.0		0.0	0.015	8.0	LOSA	0.1	0.7	0.78	0.66	0.78	40.3
2	T1	All MCs	2	0.0	2	0.0	0.015	7.9	LOSA	0.1	0.7	0.78	0.66	0.78	23.1
3	R2	All MCs	5	0.0	5	0.0	0.015	12.5	LOSA	0.1	0.7	0.78	0.66	0.78	37.1
Appr	oach		9	0.0	9	0.0	0.015	10.5	LOSA	0.1	0.7	0.78	0.66	0.78	34.8
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.587	5.3	LOSA	5.3	38.0	0.64	0.59	0.64	40.4
5	T1	All MCs	393	3.8	393	3.8	0.587	5.6	LOSA	5.3	38.0	0.64	0.59	0.64	46.7
6	R2	All MCs	294	1.1	294	1.1	0.587	10.2	LOSA	5.3	38.0	0.64	0.59	0.64	31.5
6u	U	All MCs	14	0.0	14	0.0	0.587	12.3	LOSA	5.3	38.0	0.64	0.59	0.64	44.2
Appr	oach		703	2.6	703	2.6	0.587	7.7	LOSA	5.3	38.0	0.64	0.59	0.64	40.5
North	n: Treel	ands Dr (N)												
7	L2	All MCs	392	1.5	392	1.5	0.746	13.4	LOSA	9.5	67.6	0.98	0.96	1.38	34.2
8	T1	All MCs	2	0.0	2	0.0	0.746	13.6	LOSA	9.5	67.6	0.98	0.96	1.38	26.8
9	R2	All MCs	199	3.2	199	3.2	0.746	18.4	LOS B	9.5	67.6	0.98	0.96	1.38	36.1
9u	U	All MCs	12	0.0	12	0.0	0.746	20.3	LOS B	9.5	67.6	0.98	0.96	1.38	19.9
Appr	oach		604	2.0	604	2.0	0.746	15.2	LOS B	9.5	67.6	0.98	0.96	1.38	34.6
West	: Yamb	a Rd (W)													
10	L2	All MCs	180	6.4	180	6.4	0.702	8.0	LOSA	7.9	56.9	0.79	0.70	0.91	43.4
11	T1	All MCs	588	2.7	588	2.7	0.702	8.1	LOSA	7.9	56.9	0.79	0.70	0.91	46.9
12	R2	All MCs	1	0.0	1	0.0	0.702	12.7	LOSA	7.9	56.9	0.79	0.70	0.91	42.8
Appr	oach		769	3.6	769	3.6	0.702	8.1	LOSA	7.9	56.9	0.79	0.70	0.91	46.2
All Ve	ehicles		2086	2.8	2086	2.8	0.746	10.0	LOSA	9.5	67.6	0.80	0.74	0.95	41.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Som	erset Plac		70	VOI.I//11	,,	,,,			7011					1211/11
1	L2	All MCs	2	0.0	2	0.0	0.023	11.8	LOSA	0.2	1.1	0.93	0.73	0.93	36.6
2	T1	All MCs	1	0.0	1	0.0	0.023	11.7	LOSA	0.2	1.1	0.93	0.73	0.93	20.8
3	R2	All MCs	6	0.0	6	0.0	0.023	16.2	LOS B	0.2	1.1	0.93	0.73	0.93	33.3
Appro	oach		9	0.0	9	0.0	0.023	14.7	LOS B	0.2	1.1	0.93	0.73	0.93	32.7
East:	Yamba	a Rd (E)													
4	L2	All MCs	5	0.0	5	0.0	0.751	6.7	LOSA	10.2	74.0	0.83	0.63	0.87	39.5
5	T1	All MCs	609	6.4	609	6.4	0.751	7.1	LOSA	10.2	74.0	0.83	0.63	0.87	46.0
6	R2	All MCs	262	0.8	262	8.0	0.751	11.6	LOSA	10.2	74.0	0.83	0.63	0.87	30.9
6u	U	All MCs	15	0.0	15	0.0	0.751	13.6	LOSA	10.2	74.0	0.83	0.63	0.87	43.5
Appro	oach		892	4.6	892	4.6	0.751	8.6	LOSA	10.2	74.0	0.83	0.63	0.87	41.6
North	: Treel	ands Dr (N)												
7	L2	All MCs	217	4.0	217	4.0	0.539	9.7	LOSA	4.8	34.7	0.88	0.80	1.00	37.0
8	T1	All MCs	2	0.0	2	0.0	0.539	9.8	LOSA	4.8	34.7	0.88	0.80	1.00	30.1
9	R2	All MCs	188	4.0	188	4.0	0.539	14.5	LOS B	4.8	34.7	0.88	0.80	1.00	39.3
9u	U	All MCs	5	0.0	5	0.0	0.539	16.5	LOS B	4.8	34.7	0.88	0.80	1.00	21.7
Appro	oach		413	3.9	413	3.9	0.539	12.0	LOSA	4.8	34.7	0.88	0.80	1.00	37.9
West	: Yamb	a Rd (W)													
10	L2	All MCs	143	6.1	143	6.1	0.661	7.5	LOSA	7.2	53.3	0.80	0.66	0.87	43.5
11	T1	All MCs	552	6.0	552	6.0	0.661	7.7	LOSA	7.2	53.3	0.80	0.66	0.87	46.5
12	R2	All MCs	2	0.0	2	0.0	0.661	12.1	LOSA	7.2	53.3	0.80	0.66	0.87	42.8
Appro	oach		697	6.0	697	6.0	0.661	7.7	LOSA	7.2	53.3	0.80	0.66	0.87	46.0
All Ve	hicles		2011	4.9	2011	4.9	0.751	9.0	LOSA	10.2	74.0	0.83	0.67	0.90	42.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2043 DES PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows		rival ows HV]	Deg. Satn	Aver. Delay		95% B Que [Veh.	ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m ¹			<u> </u>	km/h
South	n: Som	erset Plac	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.015	8.1	LOSA	0.1	0.7	0.79	0.66	0.79	40.2
2	T1	All MCs	2	0.0	2	0.0	0.015	8.0	LOSA	0.1	0.7	0.79	0.66	0.79	23.1
3	R2	All MCs	5	0.0	5	0.0	0.015	12.5	LOSA	0.1	0.7	0.79	0.66	0.79	37.0
Appro	oach		9	0.0	9	0.0	0.015	10.5	LOSA	0.1	0.7	0.79	0.66	0.79	34.8
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.591	5.3	LOSA	5.4	38.7	0.64	0.58	0.64	40.5
5	T1	All MCs	407	3.8	407	3.8	0.591	5.6	LOSA	5.4	38.7	0.64	0.58	0.64	46.8
6	R2	All MCs	288	1.1	288	1.1	0.591	10.2	LOSA	5.4	38.7	0.64	0.58	0.64	31.5
6u	U	All MCs	14	0.0	14	0.0	0.591	12.3	LOSA	5.4	38.7	0.64	0.58	0.64	44.3
Appro	oach		713	2.6	713	2.6	0.591	7.6	LOSA	5.4	38.7	0.64	0.58	0.64	40.8
North	: Treel	ands Dr (N)												
7	L2	All MCs	385	1.5	385	1.5	0.746	13.8	LOSA	9.5	67.7	0.99	0.97	1.40	33.9
8	T1	All MCs	2	0.0	2	0.0	0.746	14.0	LOSA	9.5	67.7	0.99	0.97	1.40	26.5
9	R2	All MCs	194	3.2	194	3.2	0.746	18.7	LOS B	9.5	67.7	0.99	0.97	1.40	35.9
9u	U	All MCs	12	0.0	12	0.0	0.746	20.7	LOS B	9.5	67.7	0.99	0.97	1.40	19.7
Appro	oach		593	2.0	593	2.0	0.746	15.6	LOS B	9.5	67.7	0.99	0.97	1.40	34.3
West	: Yamb	a Rd (W)													
10	L2	All MCs	176	6.4	176	6.4	0.710	8.1	LOSA	8.1	58.7	0.80	0.70	0.91	43.3
11	T1	All MCs	606	2.7	606	2.7	0.710	8.2	LOSA	8.1	58.7	0.80	0.70	0.91	46.8
12	R2	All MCs	1	0.0	1	0.0	0.710	12.7	LOSA	8.1	58.7	0.80	0.70	0.91	42.8
Appro	oach		783	3.5	783	3.5	0.710	8.2	LOSA	8.1	58.7	0.80	0.70	0.91	46.2
All Ve	ehicles		2098	2.8	2098	2.8	0.746	10.1	LOSA	9.5	67.7	0.80	0.74	0.96	41.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Friday, 5 May 2023 8:31:35 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Treelands Drive Intersection.sip9

♥ Site: 101 [2043 DES AM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service	Que [Veh.	ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
South	n: Som	erset Pla	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
1		All MCs	• • •	0.0	2	0.0	0.032	14.0	LOSA	0.2	1.7	0.99	0.78	0.99	35.0
2		All MCs		0.0	1		0.032	14.0	LOSA	0.2	1.7	0.99	0.78	0.99	19.7
3		All MCs		0.0		0.0	0.032	18.5 16.7	LOS B	0.2	1.7 1.7	0.99	0.78	0.99	31.8
Appro	Jacn		11	0.0	11	0.0	0.032	10.7	LUS B	0.2	1.7	0.99	0.78	0.99	31.6
East:	Yamba	a Rd (E)													
4	L2	All MCs	6	0.0	6	0.0	0.832	9.2	LOSA	15.0	109.5	0.98	0.74	1.14	38.0
5	T1	All MCs	656	6.4	656	6.4	0.832	9.6	LOSA	15.0	109.5	0.98	0.74	1.14	44.6
6	R2	All MCs	281	8.0	281	0.8	0.832	14.1	LOSA	15.0	109.5	0.98	0.74	1.14	29.9
6u	U	All MCs	17	0.0	17	0.0	0.832	16.1	LOS B	15.0	109.5	0.98	0.74	1.14	42.1
Appro	oach		960	4.6	960	4.6	0.832	11.0	LOSA	15.0	109.5	0.98	0.74	1.14	40.4
North	ı: Treel	ands Dr (N)												
7	L2	All MCs	237	4.0	237	4.0	0.650	12.8	LOSA	7.0	50.7	0.97	0.90	1.26	34.2
8	T1	All MCs	3	0.0	3	0.0	0.650	12.8	LOSA	7.0	50.7	0.97	0.90	1.26	27.1
9	R2	All MCs	208	4.0	208	4.0	0.650	17.6	LOS B	7.0	50.7	0.97	0.90	1.26	36.6
9u	U	All MCs	5	0.0	5	0.0	0.650	19.5	LOS B	7.0	50.7	0.97	0.90	1.26	20.1
Appro	oach		454	3.9	454	3.9	0.650	15.1	LOS B	7.0	50.7	0.97	0.90	1.26	35.2
West	: Yamb	a Rd (W)	1												
10	L2	All MCs	159	6.1	159	6.1	0.750	9.4	LOSA	10.4	76.8	0.92	0.76	1.09	42.4
11	T1	All MCs	604	6.0	604	6.0	0.750	9.7	LOSA	10.4	76.8	0.92	0.76	1.09	45.5
12	R2	All MCs	3	0.0	3	0.0	0.750	14.0	LOSA	10.4	76.8	0.92	0.76	1.09	41.8
Appro	oach		766	6.0	766	6.0	0.750	9.6	LOSA	10.4	76.8	0.92	0.76	1.09	45.0
All Ve	ehicles		2191	4.9	2191	4.9	0.832	11.4	LOSA	15.0	109.5	0.96	0.78	1.14	41.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2043 DES PM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows		rival lows HV]	Deg. Satn	Aver. Delay			ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m Î			<u> </u>	km/h
Sout	h: Som	erset Plac	ce (S)												
1	L2	All MCs	3	0.0	3	0.0	0.023	9.3	LOSA	0.2	1.1	0.85	0.70	0.85	39.3
2	T1	All MCs	3	0.0	3	0.0	0.023	9.2	LOSA	0.2	1.1	0.85	0.70	0.85	22.4
3	R2	All MCs	6	0.0	6	0.0	0.023	13.7	LOSA	0.2	1.1	0.85	0.70	0.85	36.0
Appr	oach		13	0.0	13	0.0	0.023	11.5	LOSA	0.2	1.1	0.85	0.70	0.85	33.6
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.661	5.9	LOSA	6.8	48.8	0.73	0.62	0.75	40.0
5	T1	All MCs	445	3.8	445	3.8	0.661	6.2	LOSA	6.8	48.8	0.73	0.62	0.75	46.4
6	R2	All MCs	314	1.1	314	1.1	0.661	10.7	LOSA	6.8	48.8	0.73	0.62	0.75	31.2
6u	U	All MCs	15	0.0	15	0.0	0.661	12.8	LOSA	6.8	48.8	0.73	0.62	0.75	43.9
Appr	oach		777	2.6	777	2.6	0.661	8.2	LOSA	6.8	48.8	0.73	0.62	0.75	40.4
North	n: Treel	ands Dr (N)												
7	L2	All MCs	413	1.5	413	1.5	0.886	24.2	LOS B	16.6	118.5	1.00	1.31	1.97	26.9
8	T1	All MCs	3	0.0	3	0.0	0.886	24.4	LOS B	16.6	118.5	1.00	1.31	1.97	19.8
9	R2	All MCs	216	3.2	216	3.2	0.886	29.2	LOS C	16.6	118.5	1.00	1.31	1.97	29.2
9u	U	All MCs	13	0.0	13	0.0	0.886	31.1	LOS C	16.6	118.5	1.00	1.31	1.97	15.8
Appr	oach		644	2.0	644	2.0	0.886	26.0	LOS B	16.6	118.5	1.00	1.31	1.97	27.5
West	: Yamb	a Rd (W)													
10	L2	All MCs	195	6.4	195	6.4	0.794	10.3	LOSA	11.6	83.7	0.92	0.82	1.16	41.5
11	T1	All MCs	653	2.7	653	2.7	0.794	10.4	LOSA	11.6	83.7	0.92	0.82	1.16	45.2
12	R2	All MCs	1	0.0	1	0.0	0.794	14.9	LOS B	11.6	83.7	0.92	0.82	1.16	41.0
Appr	oach		848	3.5	848	3.5	0.794	10.4	LOSA	11.6	83.7	0.92	0.82	1.16	44.5
All Ve	ehicles		2282	2.8	2282	2.8	0.886	14.0	LOSA	16.6	118.5	0.88	0.89	1.25	37.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

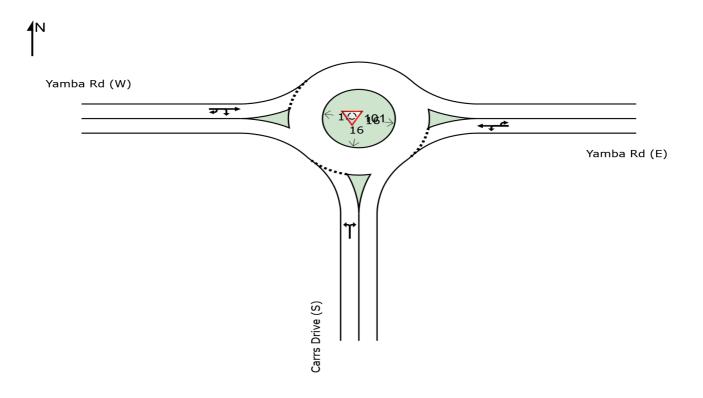
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

▼ Site: 101 [2033 BG AM (Site Folder: General)]

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Created: Monday, 8 May 2023 11:04:24 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

♥ Site: 101 [2033 BG AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	5)												
1	L2	All MCs	145	10.8	145	10.8	0.420	8.0	LOSA	2.8	20.8	0.73	0.71	0.73	37.2
3	R2	All MCs	204	4.2	204	4.2	0.420	12.1	LOSA	2.8	20.8	0.73	0.71	0.73	42.3
Appro	ach		349	6.9	349	6.9	0.420	10.4	LOSA	2.8	20.8	0.73	0.71	0.73	40.4
East:	Yamba	a Rd (E)													
4	L2	All MCs	133	1.5	133	1.5	0.469	4.8	LOSA	4.0	28.8	0.40	0.45	0.40	47.4
5	T1	All MCs	486	4.3	486	4.3	0.469	5.1	LOSA	4.0	28.8	0.40	0.45	0.40	49.6
6u	U	All MCs	3	0.0	3	0.0	0.469	11.0	LOSA	4.0	28.8	0.40	0.45	0.40	50.8
Appro	ach		622	3.7	622	3.7	0.469	5.0	LOSA	4.0	28.8	0.40	0.45	0.40	49.2
West:	Yamb	a Rd (W)													
11	T1	All MCs	521	4.8	521	4.8	0.548	6.1	LOSA	4.8	35.1	0.63	0.56	0.63	48.3
12	R2	All MCs	88	14.0	88	14.0	0.548	10.5	LOSA	4.8	35.1	0.63	0.56	0.63	40.2
12u	U	All MCs	2	0.0	2	0.0	0.548	12.0	LOSA	4.8	35.1	0.63	0.56	0.63	44.8
Appro	ach		612	6.1	612	6.1	0.548	6.8	LOSA	4.8	35.1	0.63	0.56	0.63	47.5
All Ve	hicles		1583	5.3	1583	5.3	0.548	6.9	LOSA	4.8	35.1	0.56	0.55	0.56	46.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:26 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

▼ Site: 101 [2033 BG PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	95	6.8	95	6.8	0.240	7.2	LOSA	1.5	10.5	0.65	0.69	0.65	38.7
3	R2	All MCs	113	0.0	113	0.0	0.240	11.4	LOSA	1.5	10.5	0.65	0.69	0.65	43.4
Appro	ach		207	3.1	207	3.1	0.240	9.5	LOSA	1.5	10.5	0.65	0.69	0.65	41.5
East:	Yamba	a Rd (E)													
4	L2	All MCs	168	3.3	168	3.3	0.503	5.1	LOSA	4.2	30.1	0.45	0.48	0.45	47.0
5	T1	All MCs	476	2.1	476	2.1	0.503	5.3	LOSA	4.2	30.1	0.45	0.48	0.45	49.7
6u	U	All MCs	5	0.0	5	0.0	0.503	11.3	LOSA	4.2	30.1	0.45	0.48	0.45	50.6
Appro	ach		649	2.4	649	2.4	0.503	5.3	LOSA	4.2	30.1	0.45	0.48	0.45	49.1
West:	Yamb	a Rd (W)													
11	T1	All MCs	562	2.4	562	2.4	0.526	5.3	LOSA	4.7	33.7	0.47	0.49	0.47	49.1
12	R2	All MCs	123	0.0	123	0.0	0.526	9.3	LOSA	4.7	33.7	0.47	0.49	0.47	41.7
12u	U	All MCs	1	0.0	1	0.0	0.526	11.3	LOSA	4.7	33.7	0.47	0.49	0.47	45.6
Appro	ach		686	2.0	686	2.0	0.526	6.0	LOSA	4.7	33.7	0.47	0.49	0.47	48.2
All Ve	hicles		1543	2.3	1543	2.3	0.526	6.2	LOSA	4.7	33.7	0.49	0.51	0.49	47.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:27 AM Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

Site: 101 [2043 BG AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Performa	ince										
Mov ID	Turn	Mov Class	Demand Flows [Total HV veh/h %	F	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)											
1	L2	All MCs	148 10.8	148	10.8	0.470	9.5	LOSA	3.5	26.2	0.80	0.77	0.87	35.7
3	R2	All MCs	212 4.2	212	4.2	0.470	13.6	LOSA	3.5	26.2	0.80	0.77	0.87	41.0
Appro	ach		360 6.9	360	6.9	0.470	11.9	LOSA	3.5	26.2	0.80	0.77	0.87	39.1
East:	Yamba	a Rd (E)												
4	L2	All MCs	139 1.5	139	1.5	0.534	4.9	LOSA	5.1	36.5	0.45	0.46	0.45	47.0
5	T1	All MCs	564 4.3	564	4.3	0.534	5.2	LOSA	5.1	36.5	0.45	0.46	0.45	49.3
6u	U	All MCs	4 0.0	4	0.0	0.534	11.1	LOSA	5.1	36.5	0.45	0.46	0.45	50.6
Appro	ach		707 3.7	707	3.7	0.534	5.1	LOSA	5.1	36.5	0.45	0.46	0.45	49.0
West:	Yamb	a Rd (W)												
11	T1	All MCs	604 4.8	604	4.8	0.631	6.4	LOSA	6.2	45.4	0.71	0.58	0.72	47.9
12	R2	All MCs	92 14.0	92	14.0	0.631	10.9	LOSA	6.2	45.4	0.71	0.58	0.72	39.7
12u	U	All MCs	2 0.0	2	0.0	0.631	12.3	LOSA	6.2	45.4	0.71	0.58	0.72	44.4
Appro	ach		698 6.0	698	6.0	0.631	7.0	LOSA	6.2	45.4	0.71	0.58	0.72	47.2
All Ve	hicles		1765 5.3	1765	5.3	0.631	7.3	LOSA	6.2	45.4	0.63	0.57	0.64	46.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:28 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

▼ Site: 101 [2043 BG PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	99	6.8	99	6.8	0.272	7.9	LOSA	1.7	12.3	0.71	0.71	0.71	38.0
3	R2	All MCs	117	0.0	117	0.0	0.272	12.0	LOSA	1.7	12.3	0.71	0.71	0.71	42.8
Appro	ach		216	3.1	216	3.1	0.272	10.1	LOSA	1.7	12.3	0.71	0.71	0.71	40.9
East:	Yamba	a Rd (E)													
4	L2	All MCs	171	3.3	171	3.3	0.565	5.2	LOSA	5.2	37.4	0.50	0.48	0.50	46.7
5	T1	All MCs	553	2.1	553	2.1	0.565	5.4	LOSA	5.2	37.4	0.50	0.48	0.50	49.4
6u	U	All MCs	6	0.0	6	0.0	0.565	11.4	LOSA	5.2	37.4	0.50	0.48	0.50	50.3
Appro	ach		729	2.4	729	2.4	0.565	5.4	LOSA	5.2	37.4	0.50	0.48	0.50	48.9
West:	Yamb	a Rd (W)													
11	T1	All MCs	652	2.4	652	2.4	0.599	5.4	LOSA	6.0	43.0	0.54	0.50	0.54	48.8
12	R2	All MCs	125	0.0	125	0.0	0.599	9.5	LOSA	6.0	43.0	0.54	0.50	0.54	41.3
12u	U	All MCs	1	0.0	1	0.0	0.599	11.4	LOSA	6.0	43.0	0.54	0.50	0.54	45.3
Appro	ach		778	2.0	778	2.0	0.599	6.1	LOSA	6.0	43.0	0.54	0.50	0.54	48.0
All Ve	hicles		1723	2.3	1723	2.3	0.599	6.3	LOSA	6.0	43.0	0.54	0.52	0.54	47.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:28 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2033 BG AM Sens (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfo	rmaı	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	149	10.8	149	10.8	0.463	9.1	LOSA	3.4	25.3	0.78	0.76	0.84	36.1
3	R2	All MCs	214	4.2	214	4.2	0.463	13.2	LOSA	3.4	25.3	0.78	0.76	0.84	41.3
Appro	ach		363	6.9	363	6.9	0.463	11.5	LOSA	3.4	25.3	0.78	0.76	0.84	39.4
East:	Yamb	a Rd (E)													
4	L2	All MCs	141	1.5	141	1.5	0.520	4.9	LOSA	4.8	34.6	0.45	0.46	0.45	47.1
5	T1	All MCs	540	4.3	540	4.3	0.520	5.2	LOSA	4.8	34.6	0.45	0.46	0.45	49.4
6u	U	All MCs	4	0.0	4	0.0	0.520	11.1	LOSA	4.8	34.6	0.45	0.46	0.45	50.6
Appro	ach		685	3.7	685	3.7	0.520	5.1	LOSA	4.8	34.6	0.45	0.46	0.45	49.0
West:	Yamb	a Rd (W)													
11	T1	All MCs	578	4.8	578	4.8	0.612	6.3	LOSA	5.7	42.3	0.70	0.58	0.70	48.0
12	R2	All MCs	94	14.0	94	14.0	0.612	10.8	LOSA	5.7	42.3	0.70	0.58	0.70	39.8
12u	U	All MCs	2	0.0	2	0.0	0.612	12.2	LOSA	5.7	42.3	0.70	0.58	0.70	44.5
Appro	ach		674	6.1	674	6.1	0.612	7.0	LOSA	5.7	42.3	0.70	0.58	0.70	47.2
All Ve	hicles		1722	5.3	1722	5.3	0.612	7.2	LOSA	5.7	42.3	0.62	0.57	0.63	46.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:29 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2033 BG PM Sens (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehicle Movement Performance Mov Turn Mov Demand Arrival Deg. Aver. Level of 95% Back Of Prop. Eff. Aver. Aver.															
Mov ID	Turn	Mov Class	FI	ows HV]		ows	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	100	6.8	100	6.8	0.269	7.7	LOSA	1.7	12.1	0.69	0.70	0.69	38.2
3	R2	All MCs	119	0.0	119	0.0	0.269	11.8	LOSA	1.7	12.1	0.69	0.70	0.69	43.0
Appro	ach		219	3.1	219	3.1	0.269	9.9	LOSA	1.7	12.1	0.69	0.70	0.69	41.1
East:	Yamb	a Rd (E)													
4	L2	All MCs	172	3.3	172	3.3	0.549	5.1	LOSA	4.9	35.3	0.49	0.48	0.49	46.7
5	T1	All MCs	528	2.1	528	2.1	0.549	5.4	LOSA	4.9	35.3	0.49	0.48	0.49	49.5
6u	U	All MCs	6	0.0	6	0.0	0.549	11.4	LOSA	4.9	35.3	0.49	0.48	0.49	50.4
Appro	ach		706	2.4	706	2.4	0.549	5.4	LOSA	4.9	35.3	0.49	0.48	0.49	48.9
West:	Yamb	a Rd (W)													
11	T1	All MCs	623	2.4	623	2.4	0.581	5.4	LOSA	5.7	40.3	0.53	0.50	0.53	48.9
12	R2	All MCs	126	0.0	126	0.0	0.581	9.5	LOSA	5.7	40.3	0.53	0.50	0.53	41.4
12u	U	All MCs	1	0.0	1	0.0	0.581	11.4	LOSA	5.7	40.3	0.53	0.50	0.53	45.3
Appro	ach		751	2.0	751	2.0	0.581	6.1	LOSA	5.7	40.3	0.53	0.50	0.53	48.0
All Ve	hicles		1676	2.3	1676	2.3	0.581	6.3	LOSA	5.7	40.3	0.53	0.52	0.53	47.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:30 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

♥ Site: 101 [2043 BG AM Sens (Site Folder: General)]Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		awc		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	154 1	8.01	154 1	10.8	0.527	11.3	LOSA	4.4	33.0	0.86	0.84	1.02	34.2
3	R2	All MCs	221	4.2	221	4.2	0.527	15.3	LOS B	4.4	33.0	0.86	0.84	1.02	39.5
Appro	ach		375	6.9	375	6.9	0.527	13.7	LOSA	4.4	33.0	0.86	0.84	1.02	37.6
East:	Yamba	a Rd (E)													
4	L2	All MCs	148	1.5	148	1.5	0.594	5.0	LOSA	6.2	44.9	0.52	0.47	0.52	46.6
5	T1	All MCs	626	4.3	626	4.3	0.594	5.3	LOSA	6.2	44.9	0.52	0.47	0.52	49.0
6u	U	All MCs	4	0.0	4	0.0	0.594	11.3	LOSA	6.2	44.9	0.52	0.47	0.52	50.2
Appro	ach		779	3.7	779	3.7	0.594	5.3	LOSA	6.2	44.9	0.52	0.47	0.52	48.6
West:	Yamb	a Rd (W)													
11	T1	All MCs	671	4.8	671	4.8	0.704	7.5	LOSA	8.5	62.5	0.80	0.64	0.86	47.4
12	R2	All MCs	98 1	14.0	98 ′	14.0	0.704	12.0	LOSA	8.5	62.5	0.80	0.64	0.86	39.1
12u	U	All MCs	3	0.0	3	0.0	0.704	13.4	LOSA	8.5	62.5	0.80	0.64	0.86	43.8
Appro	ach		772	5.9	772	5.9	0.704	8.1	LOSA	8.5	62.5	0.80	0.64	0.86	46.7
All Ve	hicles		1925	5.2	1925	5.2	0.704	8.1	LOSA	8.5	62.5	0.70	0.61	0.75	45.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:30 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2043 BG PM Sens (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehicle Movement Performance Mov Turn Mov Demand Arrival Deg. Aver. Level of 95% Back Of Prop. Eff. Aver. Aver.															
Mov ID	Turn	Mov Class	FI	ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		lack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	104	6.8	104	6.8	0.308	8.5	LOSA	2.0	14.6	0.76	0.73	0.76	37.4
3	R2	All MCs	124	0.0	124	0.0	0.308	12.6	LOSA	2.0	14.6	0.76	0.73	0.76	42.2
Appro	ach		228	3.1	228	3.1	0.308	10.8	LOSA	2.0	14.6	0.76	0.73	0.76	40.2
East: `	Yamba	a Rd (E)													
4	L2	All MCs	175	3.3	175	3.3	0.617	5.3	LOSA	6.3	44.9	0.56	0.49	0.56	46.3
5	T1	All MCs	614	2.1	614	2.1	0.617	5.5	LOSA	6.3	44.9	0.56	0.49	0.56	49.1
6u	U	All MCs	7	0.0	7	0.0	0.617	11.5	LOSA	6.3	44.9	0.56	0.49	0.56	50.1
Appro	ach		796	2.3	796	2.3	0.617	5.5	LOSA	6.3	44.9	0.56	0.49	0.56	48.6
West:	Yamb	a Rd (W)													
11	T1	All MCs	723	2.4	723	2.4	0.662	5.6	LOSA	7.4	52.7	0.61	0.51	0.61	48.5
12	R2	All MCs	128	0.0	128	0.0	0.662	9.7	LOSA	7.4	52.7	0.61	0.51	0.61	40.9
12u	U	All MCs	1	0.0	1	0.0	0.662	11.6	LOSA	7.4	52.7	0.61	0.51	0.61	44.9
Appro	ach		853	2.0	853	2.0	0.662	6.2	LOSA	7.4	52.7	0.61	0.51	0.61	47.7
All Vel	hicles		1877	2.3	1877	2.3	0.662	6.5	LOSA	7.4	52.7	0.61	0.53	0.61	47.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:31 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

♥ Site: 101 [2033 DES AM - Carrs Only (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None)

Roundabout

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	5)												
1	L2	All MCs	298	10.8	298	10.8	0.846	18.9	LOS B	14.7	108.8	1.00	1.12	1.67	28.7
3	R2	All MCs	386	4.2	386	4.2	0.846	22.9	LOS B	14.7	108.8	1.00	1.12	1.67	34.1
Appro	ach		684	7.1	684	7.1	0.846	21.2	LOS B	14.7	108.8	1.00	1.12	1.67	32.0
East:	Yamba	a Rd (E)													
4	L2	All MCs	234	1.5	234	1.5	0.607	5.5	LOSA	6.2	44.8	0.65	0.53	0.65	46.0
5	T1	All MCs	486	4.3	486	4.3	0.607	5.8	LOSA	6.2	44.8	0.65	0.53	0.65	48.5
6u	U	All MCs	3	0.0	3	0.0	0.607	11.8	LOSA	6.2	44.8	0.65	0.53	0.65	49.8
Appro	ach		723	3.4	723	3.4	0.607	5.8	LOSA	6.2	44.8	0.65	0.53	0.65	47.8
West:	Yamb	a Rd (W)													
11	T1	All MCs	521	4.8	521	4.8	0.775	12.7	LOSA	11.2	83.3	0.99	0.89	1.30	43.6
12	R2	All MCs	155	14.0	155	14.0	0.775	17.3	LOS B	11.2	83.3	0.99	0.89	1.30	34.7
12u	U	All MCs	2	0.0	2	0.0	0.775	18.5	LOS B	11.2	83.3	0.99	0.89	1.30	39.8
Appro	ach		678	6.9	678	6.9	0.775	13.8	LOSA	11.2	83.3	0.99	0.89	1.30	42.1
All Ve	hicles		2085	5.7	2085	5.7	0.846	13.4	LOSA	14.7	108.8	0.87	0.84	1.20	40.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:31 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

▼ Site: 101 [2033 DES PM - Carrs Only (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None)

Roundabout

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	5)												
1	L2	All MCs	173	6.8	173	6.8	0.483	8.2	LOSA	3.9	27.9	0.82	0.74	0.86	37.6
3	R2	All MCs	214	0.0	214	0.0	0.483	12.3	LOSA	3.9	27.9	0.82	0.74	0.86	42.4
Appro	ach		386	3.0	386	3.0	0.483	10.5	LOSA	3.9	27.9	0.82	0.74	0.86	40.5
East:	Yamb	a Rd (E)													
4	L2	All MCs	378	3.3	378	3.3	0.808	10.6	LOSA	13.3	95.0	0.96	0.79	1.17	42.6
5	T1	All MCs	476	2.1	476	2.1	0.808	10.7	LOSA	13.3	95.0	0.96	0.79	1.17	45.8
6u	U	All MCs	5	0.0	5	0.0	0.808	16.7	LOS B	13.3	95.0	0.96	0.79	1.17	47.3
Appro	ach		859	2.6	859	2.6	0.808	10.7	LOSA	13.3	95.0	0.96	0.79	1.17	44.6
West:	Yamb	a Rd (W)													
11	T1	All MCs	562	2.4	562	2.4	0.733	7.6	LOSA	9.5	67.1	0.82	0.65	0.87	47.0
12	R2	All MCs	277	0.0	277	0.0	0.733	11.6	LOSA	9.5	67.1	0.82	0.65	0.87	39.0
12u	U	All MCs	1	0.0	1	0.0	0.733	13.5	LOSA	9.5	67.1	0.82	0.65	0.87	43.2
Appro	ach		840	1.6	840	1.6	0.733	8.9	LOSA	9.5	67.1	0.82	0.65	0.87	45.0
All Ve	hicles		2085	2.3	2085	2.3	0.808	9.9	LOSA	13.3	95.0	0.88	0.72	0.99	44.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:32 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

♥ Site: 101 [2033 DES AM Sens - Carrs Only (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	303	10.8	303	10.8	0.931	31.4	LOS C	22.5	166.8	1.00	1.50	2.34	22.8
3	R2	All MCs	395	4.2	395	4.2	0.931	35.4	LOS C	22.5	166.8	1.00	1.50	2.34	27.9
Appro	ach		698	7.1	698	7.1	0.931	33.7	LOS C	22.5	166.8	1.00	1.50	2.34	25.8
East:	Yamb	a Rd (E)													
4	L2	All MCs	242	1.5	242	1.5	0.664	5.7	LOSA	7.4	53.0	0.71	0.54	0.71	45.6
5	T1	All MCs	540	4.3	540	4.3	0.664	6.0	LOSA	7.4	53.0	0.71	0.54	0.71	48.1
6u	U	All MCs	4	0.0	4	0.0	0.664	12.0	LOSA	7.4	53.0	0.71	0.54	0.71	49.5
Appro	ach		786	3.4	786	3.4	0.664	6.0	LOSA	7.4	53.0	0.71	0.54	0.71	47.5
West:	Yamb	a Rd (W)													
11	T1	All MCs	578	4.8	578	4.8	0.854	16.7	LOS B	15.7	116.1	1.00	1.06	1.53	40.8
12	R2	All MCs	160	14.0	160	14.0	0.854	21.3	LOS B	15.7	116.1	1.00	1.06	1.53	31.6
12u	U	All MCs	2	0.0	2	0.0	0.854	22.5	LOS B	15.7	116.1	1.00	1.06	1.53	36.8
Appro	ach		740	6.8	740	6.8	0.854	17.7	LOS B	15.7	116.1	1.00	1.06	1.53	39.3
All Ve	hicles		2224	5.7	2224	5.7	0.931	18.6	LOS B	22.5	166.8	0.90	1.02	1.50	36.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:33 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

♥ Site: 101 [2033 DES PM Sens - Carrs Only (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehicle Movement Performance Mov Turn Mov Demand Arrival Deg. Aver. Level of 95% Back Of Prop. Eff. Aver. Aver.															
Mov ID	Turn	Mov Class		lows HV]	FI	ows	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	3)												
1	L2	All MCs	178	6.8	178	6.8	0.533	9.6	LOSA	4.7	34.0	0.88	0.79	0.98	36.3
3	R2	All MCs	220	0.0	220	0.0	0.533	13.6	LOSA	4.7	34.0	0.88	0.79	0.98	41.2
Appro	ach		398	3.0	398	3.0	0.533	11.8	LOSA	4.7	34.0	0.88	0.79	0.98	39.3
East:	Yamb	a Rd (E)													
4	L2	All MCs	381	3.3	381	3.3	0.867	13.1	LOSA	17.7	126.9	1.00	0.92	1.34	40.3
5	T1	All MCs	528	2.1	528	2.1	0.867	13.3	LOSA	17.7	126.9	1.00	0.92	1.34	43.7
6u	U	All MCs	6	0.0	6	0.0	0.867	19.3	LOS B	17.7	126.9	1.00	0.92	1.34	45.4
Appro	ach		916	2.6	916	2.6	0.867	13.3	LOSA	17.7	126.9	1.00	0.92	1.34	42.4
West:	Yamb	a Rd (W)													
11	T1	All MCs	623	2.4	623	2.4	0.795	9.0	LOSA	12.5	89.1	0.91	0.70	1.03	46.3
12	R2	All MCs	280	0.0	280	0.0	0.795	13.0	LOSA	12.5	89.1	0.91	0.70	1.03	38.2
12u	U	All MCs	1	0.0	1	0.0	0.795	14.9	LOS B	12.5	89.1	0.91	0.70	1.03	42.5
Appro	ach		904	1.7	904	1.7	0.795	10.2	LOSA	12.5	89.1	0.91	0.70	1.03	44.4
All Ve	hicles		2218	2.3	2218	2.3	0.867	11.8	LOSA	17.7	126.9	0.94	0.81	1.15	42.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:33 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

♥ Site: 101 [2033 DES AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None)

Roundabout

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	288	10.8	288	10.8	0.578	10.5	LOSA	5.2	39.3	0.84	0.81	1.00	35.4
3	R2	All MCs	168	4.2	168	4.2	0.578	14.5	LOS B	5.2	39.3	0.84	0.81	1.00	40.8
Appro	ach		457	8.4	457	8.4	0.578	12.0	LOSA	5.2	39.3	0.84	0.81	1.00	37.6
East:	Yamba	a Rd (E)													
4	L2	All MCs	102	1.5	102	1.5	0.505	5.2	LOSA	4.3	30.8	0.52	0.50	0.52	46.6
5	T1	All MCs	509	4.3	509	4.3	0.505	5.6	LOSA	4.3	30.8	0.52	0.50	0.52	49.0
6u	U	All MCs	3	0.0	3	0.0	0.505	11.5	LOSA	4.3	30.8	0.52	0.50	0.52	50.2
Appro	ach		615	3.8	615	3.8	0.505	5.5	LOSA	4.3	30.8	0.52	0.50	0.52	48.6
West:	Yamb	a Rd (W)													
11	T1	All MCs	531	4.8	531	4.8	0.581	5.9	LOSA	5.5	40.8	0.63	0.54	0.63	48.3
12	R2	All MCs	142	14.0	142	14.0	0.581	10.3	LOSA	5.5	40.8	0.63	0.54	0.63	40.1
12u	U	All MCs	2	0.0	2	0.0	0.581	11.8	LOSA	5.5	40.8	0.63	0.54	0.63	44.7
Appro	ach		675	6.7	675	6.7	0.581	6.8	LOSA	5.5	40.8	0.63	0.54	0.63	47.0
All Ve	hicles		1746	6.1	1746	6.1	0.581	7.7	LOSA	5.5	40.8	0.64	0.60	0.69	45.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:34 AM Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

♥ Site: 101 [2033 DES PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Yamba Road / Carrs Drive

Site Category: (None) Roundabout

Vehic	le Mo	vement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)												
1	L2	All MCs	162	6.8	162	6.8	0.317	7.5	LOSA	2.1	15.3	0.72	0.69	0.72	39.1
3	R2	All MCs	95	0.0	95	0.0	0.317	11.6	LOSA	2.1	15.3	0.72	0.69	0.72	43.8
Appro	ach		257	4.3	257	4.3	0.317	9.0	LOSA	2.1	15.3	0.72	0.69	0.72	41.1
East: `	Yamba	a Rd (E)													
4	L2	All MCs	122	3.3	122	3.3	0.601	7.4	LOSA	5.6	39.8	0.74	0.65	0.79	45.1
5	T1	All MCs	487	2.1	487	2.1	0.601	7.6	LOSA	5.6	39.8	0.74	0.65	0.79	48.1
6u	U	All MCs	5	0.0	5	0.0	0.601	13.6	LOSA	5.6	39.8	0.74	0.65	0.79	49.2
Appro	ach		615	2.3	615	2.3	0.601	7.6	LOSA	5.6	39.8	0.74	0.65	0.79	47.6
West:	Yamb	a Rd (W)													
11	T1	All MCs	586	2.4	586	2.4	0.664	5.3	LOSA	7.7	54.9	0.55	0.51	0.55	48.3
12	R2	All MCs	315	0.0	315	0.0	0.664	9.4	LOSA	7.7	54.9	0.55	0.51	0.55	40.7
12u	U	All MCs	1	0.0	1	0.0	0.664	11.3	LOSA	7.7	54.9	0.55	0.51	0.55	44.8
Appro	ach		902	1.6	902	1.6	0.664	6.8	LOSA	7.7	54.9	0.55	0.51	0.55	46.3
All Vel	hicles		1774	2.2	1774	2.2	0.664	7.4	LOSA	7.7	54.9	0.64	0.58	0.66	46.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:35 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

₩ Site: 101 [2033 DES AM Sens (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfor	man	ice										
Mov ID	Turn	Mov Class	Dema Flo [Total H veh/h	ows HV][Fl	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	294 1	8.0	294 ′	10.8	0.634	12.4	LOSA	6.4	48.2	0.90	0.88	1.16	33.7
3	R2	All MCs	178	4.2	178	4.2	0.634	16.5	LOS B	6.4	48.2	0.90	0.88	1.16	39.1
Appro	ach		472	8.3	472	8.3	0.634	14.0	LOSA	6.4	48.2	0.90	0.88	1.16	36.0
East:	Yamba	a Rd (E)													
4	L2	All MCs	111	1.5	111	1.5	0.559	5.4	LOSA	5.1	37.1	0.57	0.51	0.57	46.3
5	T1	All MCs	563	4.3	563	4.3	0.559	5.7	LOSA	5.1	37.1	0.57	0.51	0.57	48.7
6u	U	All MCs	4	0.0	4	0.0	0.559	11.6	LOSA	5.1	37.1	0.57	0.51	0.57	50.0
Appro	ach		678	3.8	678	3.8	0.559	5.7	LOSA	5.1	37.1	0.57	0.51	0.57	48.4
West:	Yamb	a Rd (W)													
11	T1	All MCs	588	4.8	588	4.8	0.642	6.1	LOSA	6.6	49.1	0.70	0.56	0.70	47.9
12	R2	All MCs	147 1	4.0	147 ′	14.0	0.642	10.5	LOSA	6.6	49.1	0.70	0.56	0.70	39.7
12u	U	All MCs	2	0.0	2	0.0	0.642	12.0	LOSA	6.6	49.1	0.70	0.56	0.70	44.4
Appro	ach		738	6.6	738	6.6	0.642	7.0	LOSA	6.6	49.1	0.70	0.56	0.70	46.7
All Ve	hicles		1887	6.0	1887	6.0	0.642	8.3	LOSA	6.6	49.1	0.70	0.62	0.77	44.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:35 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2033 DES PM Sens (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce		_								
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		lack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	167	6.8	167	6.8	0.355	8.0	LOSA	2.5	17.8	0.77	0.72	0.77	38.5
3	R2	All MCs	101	0.0	101	0.0	0.355	12.1	LOSA	2.5	17.8	0.77	0.72	0.77	43.2
Appro	ach		268	4.2	268	4.2	0.355	9.5	LOSA	2.5	17.8	0.77	0.72	0.77	40.5
East: `	Yamba	a Rd (E)													
4	L2	All MCs	125	3.3	125	3.3	0.660	8.3	LOSA	7.1	50.9	0.80	0.69	0.90	44.7
5	T1	All MCs	540	2.1	540	2.1	0.660	8.5	LOSA	7.1	50.9	0.80	0.69	0.90	47.6
6u	U	All MCs	6	0.0	6	0.0	0.660	14.4	LOSA	7.1	50.9	0.80	0.69	0.90	48.8
Appro	ach		672	2.3	672	2.3	0.660	8.5	LOSA	7.1	50.9	0.80	0.69	0.90	47.2
West:	Yamb	a Rd (W)													
11	T1	All MCs	647	2.4	647	2.4	0.718	5.5	LOSA	9.3	66.0	0.63	0.52	0.63	48.0
12	R2	All MCs	318	0.0	318	0.0	0.718	9.6	LOSA	9.3	66.0	0.63	0.52	0.63	40.3
12u	U	All MCs	1	0.0	1	0.0	0.718	11.5	LOSA	9.3	66.0	0.63	0.52	0.63	44.4
Appro	ach		966	1.6	966	1.6	0.718	6.9	LOSA	9.3	66.0	0.63	0.52	0.63	46.1
All Vel	hicles		1906	2.2	1906	2.2	0.718	7.8	LOSA	9.3	66.0	0.71	0.61	0.74	45.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:36 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	293	10.8	293	10.8	0.648	13.2	LOSA	6.7	50.4	0.92	0.90	1.21	33.1
3	R2	All MCs	176	4.2	176	4.2	0.648	17.2	LOS B	6.7	50.4	0.92	0.90	1.21	38.5
Appro	ach		468	8.3	468	8.3	0.648	14.7	LOS B	6.7	50.4	0.92	0.90	1.21	35.4
East:	Yamba	a Rd (E)													
4	L2	All MCs	108	1.5	108	1.5	0.576	5.4	LOSA	5.4	39.3	0.58	0.51	0.58	46.2
5	T1	All MCs	587	4.3	587	4.3	0.576	5.7	LOSA	5.4	39.3	0.58	0.51	0.58	48.6
6u	U	All MCs	4	0.0	4	0.0	0.576	11.7	LOSA	5.4	39.3	0.58	0.51	0.58	49.9
Appro	ach		700	3.8	700	3.8	0.576	5.7	LOSA	5.4	39.3	0.58	0.51	0.58	48.3
West:	Yamb	a Rd (W)													
11	T1	All MCs	615	4.8	615	4.8	0.661	6.1	LOSA	7.1	52.2	0.72	0.56	0.72	47.9
12	R2	All MCs	146	14.0	146	14.0	0.661	10.6	LOSA	7.1	52.2	0.72	0.56	0.72	39.6
12u	U	All MCs	2	0.0	2	0.0	0.661	12.0	LOSA	7.1	52.2	0.72	0.56	0.72	44.3
Appro	ach		763	6.6	763	6.6	0.661	7.0	LOSA	7.1	52.2	0.72	0.56	0.72	46.7
All Ve	hicles		1932	6.0	1932	6.0	0.661	8.4	LOSA	7.1	52.2	0.72	0.63	0.79	44.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:37 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

▼ Site: 101 [2043 DES PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce		_								
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	166	6.8	166	6.8	0.362	8.2	LOSA	2.5	18.3	0.79	0.73	0.79	38.3
3	R2	All MCs	99	0.0	99	0.0	0.362	12.3	LOSA	2.5	18.3	0.79	0.73	0.79	43.1
Appro	ach		265	4.3	265	4.3	0.362	9.7	LOSA	2.5	18.3	0.79	0.73	0.79	40.3
East:	Yamba	a Rd (E)													
4	L2	All MCs	125	3.3	125	3.3	0.683	8.6	LOSA	7.8	55.7	0.82	0.71	0.94	44.5
5	T1	All MCs	564	2.1	564	2.1	0.683	8.8	LOSA	7.8	55.7	0.82	0.71	0.94	47.5
6u	U	All MCs	6	0.0	6	0.0	0.683	14.7	LOS B	7.8	55.7	0.82	0.71	0.94	48.7
Appro	ach		696	2.3	696	2.3	0.683	8.8	LOSA	7.8	55.7	0.82	0.71	0.94	47.0
West:	Yamb	a Rd (W)													
11	T1	All MCs	676	2.4	676	2.4	0.735	5.6	LOSA	10.0	70.6	0.65	0.52	0.65	48.0
12	R2	All MCs	317	0.0	317	0.0	0.735	9.6	LOSA	10.0	70.6	0.65	0.52	0.65	40.3
12u	U	All MCs	1	0.0	1	0.0	0.735	11.5	LOSA	10.0	70.6	0.65	0.52	0.65	44.3
Appro	ach		994	1.6	994	1.6	0.735	6.9	LOSA	10.0	70.6	0.65	0.52	0.65	46.1
All Ve	hicles		1955	2.2	1955	2.2	0.735	7.9	LOSA	10.0	70.6	0.73	0.61	0.77	45.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:37 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

₩ Site: 101 [2043 DES AM Sens (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	297	10.8	297	10.8	0.729	17.1	LOS B	8.8	65.9	0.99	1.01	1.47	30.2
3	R2	All MCs	185	4.2	185	4.2	0.729	21.1	LOS B	8.8	65.9	0.99	1.01	1.47	35.7
Appro	ach		482	8.3	482	8.3	0.729	18.6	LOS B	8.8	65.9	0.99	1.01	1.47	32.5
East:	Yamba	a Rd (E)													
4	L2	All MCs	118	1.5	118	1.5	0.642	5.6	LOSA	6.7	48.7	0.66	0.53	0.66	45.7
5	T1	All MCs	649	4.3	649	4.3	0.642	5.9	LOSA	6.7	48.7	0.66	0.53	0.66	48.2
6u	U	All MCs	4	0.0	4	0.0	0.642	11.9	LOSA	6.7	48.7	0.66	0.53	0.66	49.6
Appro	ach		772	3.8	772	3.8	0.642	5.9	LOSA	6.7	48.7	0.66	0.53	0.66	47.9
West:	Yamb	a Rd (W)													
11	T1	All MCs	681	4.8	681	4.8	0.734	7.1	LOSA	9.6	70.7	0.82	0.61	0.85	47.3
12	R2	All MCs	153	14.0	153	14.0	0.734	11.5	LOSA	9.6	70.7	0.82	0.61	0.85	39.0
12u	U	All MCs	3	0.0	3	0.0	0.734	13.0	LOSA	9.6	70.7	0.82	0.61	0.85	43.7
Appro	ach		837	6.5	837	6.5	0.734	7.9	LOSA	9.6	70.7	0.82	0.61	0.85	46.2
All Ve	hicles		2091	5.9	2091	5.9	0.734	9.6	LOSA	9.6	70.7	0.80	0.67	0.93	43.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:38 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

₩ Site: 101 [2043 DES PM Sens (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rmaı	nce										
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)												
1	L2	All MCs	172	6.8	172	6.8	0.415	9.1	LOSA	3.1	22.5	0.86	0.76	0.88	37.3
3	R2	All MCs	106	0.0	106	0.0	0.415	13.1	LOSA	3.1	22.5	0.86	0.76	0.88	42.2
Appro	ach		278	4.2	278	4.2	0.415	10.6	LOSA	3.1	22.5	0.86	0.76	0.88	39.5
East:	Yamba	a Rd (E)													
4	L2	All MCs	128	3.3	128	3.3	0.753	10.0	LOSA	10.4	74.3	0.91	0.77	1.10	43.2
5	T1	All MCs	625	2.1	625	2.1	0.753	10.2	LOSA	10.4	74.3	0.91	0.77	1.10	46.3
6u	U	All MCs	7	0.0	7	0.0	0.753	16.2	LOS B	10.4	74.3	0.91	0.77	1.10	47.7
Appro	ach		761	2.3	761	2.3	0.753	10.2	LOSA	10.4	74.3	0.91	0.77	1.10	45.9
West:	Yamb	a Rd (W)													
11	T1	All MCs	747	2.4	747	2.4	0.799	5.9	LOSA	12.5	88.5	0.77	0.53	0.77	47.5
12	R2	All MCs	320	0.0	320	0.0	0.799	9.9	LOSA	12.5	88.5	0.77	0.53	0.77	39.6
12u	U	All MCs	1	0.0	1	0.0	0.799	11.9	LOSA	12.5	88.5	0.77	0.53	0.77	43.8
Appro	ach		1068	1.7	1068	1.7	0.799	7.1	LOSA	12.5	88.5	0.77	0.53	0.77	45.7
All Ve	hicles		2107	2.2	2107	2.2	0.799	8.7	LOSA	12.5	88.5	0.83	0.65	0.90	45.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:21:39 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

₩ Site: 101 [2033 DES AM Sens - Trigger (450 Lots) (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		lack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	225	10.8	225	10.8	0.853	21.2	LOS B	15.0	110.9	1.00	1.19	1.79	27.4
3	R2	All MCs	439	4.2	439	4.2	0.853	25.2	LOS B	15.0	110.9	1.00	1.19	1.79	32.7
Appro	ach		664	6.4	664	6.4	0.853	23.8	LOS B	15.0	110.9	1.00	1.19	1.79	31.1
East:	Yamba	a Rd (E)													
4	L2	All MCs	163	1.5	163	1.5	0.554	5.0	LOSA	5.6	40.4	0.53	0.48	0.53	46.6
5	T1	All MCs	540	4.3	540	4.3	0.554	5.3	LOSA	5.6	40.4	0.53	0.48	0.53	49.0
6u	U	All MCs	4	0.0	4	0.0	0.554	11.3	LOSA	5.6	40.4	0.53	0.48	0.53	50.2
Appro	ach		707	3.6	707	3.6	0.554	5.3	LOSA	5.6	40.4	0.53	0.48	0.53	48.5
West:	Yamb	a Rd (W)													
11	T1	All MCs	578	4.8	578	4.8	0.836	16.8	LOS B	14.2	104.6	1.00	1.06	1.53	40.9
12	R2	All MCs	107	14.0	107	14.0	0.836	21.5	LOS B	14.2	104.6	1.00	1.06	1.53	31.6
12u	U	All MCs	2	0.0	2	0.0	0.836	22.5	LOS B	14.2	104.6	1.00	1.06	1.53	36.9
Appro	ach		687	6.2	687	6.2	0.836	17.5	LOS B	14.2	104.6	1.00	1.06	1.53	39.8
All Ve	hicles		2059	5.4	2059	5.4	0.853	15.3	LOS B	15.0	110.9	0.84	0.90	1.27	39.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 14 December 2022 1:26:48 PM

▼ Site: 101 [2033 DES PM Sens - Trigger (450 Lots) (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	145	6.8	145	6.8	0.395	8.0	LOSA	2.8	20.1	0.78	0.72	0.78	38.0
3	R2	All MCs	161	0.0	161	0.0	0.395	12.1	LOSA	2.8	20.1	0.78	0.72	0.78	42.7
Appro	ach		306	3.2	306	3.2	0.395	10.2	LOSA	2.8	20.1	0.78	0.72	0.78	40.7
East:	Yamba	a Rd (E)													
4	L2	All MCs	288	3.3	288	3.3	0.713	6.9	LOSA	8.6	61.2	0.78	0.61	0.82	45.2
5	T1	All MCs	528	2.1	528	2.1	0.713	7.1	LOSA	8.6	61.2	0.78	0.61	0.82	48.1
6u	U	All MCs	6	0.0	6	0.0	0.713	13.1	LOSA	8.6	61.2	0.78	0.61	0.82	49.3
Appro	ach		823	2.5	823	2.5	0.713	7.1	LOSA	8.6	61.2	0.78	0.61	0.82	47.3
West:	Yamb	a Rd (W)													
11	T1	All MCs	623	2.4	623	2.4	0.683	6.0	LOSA	7.6	53.9	0.69	0.56	0.69	47.9
12	R2	All MCs	212	0.0	212	0.0	0.683	10.1	LOSA	7.6	53.9	0.69	0.56	0.69	40.1
12u	U	All MCs	1	0.0	1	0.0	0.683	12.0	LOSA	7.6	53.9	0.69	0.56	0.69	44.3
Appro	ach		836	1.8	836	1.8	0.683	7.0	LOSA	7.6	53.9	0.69	0.56	0.69	46.5
All Ve	hicles		1965	2.3	1965	2.3	0.713	7.6	LOSA	8.6	61.2	0.74	0.61	0.76	46.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 14 December 2022 1:26:49 PM

♥ Site: 101 [2033 DES AM Sens - Trigger (350 Lots + NC) (Site

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Yamba Road / Carrs Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	223	10.8	223	10.8	0.851	21.0	LOS B	14.8	109.4	1.00	1.18	1.77	27.5
3	R2	All MCs	435	4.2	435	4.2	0.851	24.9	LOS B	14.8	109.4	1.00	1.18	1.77	32.8
Appro	ach		658	6.4	658	6.4	0.851	23.6	LOS B	14.8	109.4	1.00	1.18	1.77	31.2
East:	Yamb	a Rd (E)													
4	L2	All MCs	180	1.5	180	1.5	0.577	5.2	LOSA	5.9	42.9	0.57	0.49	0.57	46.4
5	T1	All MCs	540	4.3	540	4.3	0.577	5.5	LOSA	5.9	42.9	0.57	0.49	0.57	48.8
6u	U	All MCs	4	0.0	4	0.0	0.577	11.4	LOSA	5.9	42.9	0.57	0.49	0.57	50.1
Appro			724	3.6	724	3.6	0.577	5.4	LOSA	5.9	42.9	0.57	0.49	0.57	48.3
West:	Yamb	a Rd (W)													
11	T1	All MCs	578	4.8	578	4.8	0.845	17.3	LOS B	14.8	109.5	1.00	1.08	1.56	40.5
12	R2	All MCs	119	14.0	119	14.0	0.845	21.9	LOS B	14.8	109.5	1.00	1.08	1.56	31.3
12u	U	All MCs	2	0.0	2	0.0	0.845	23.0	LOS B	14.8	109.5	1.00	1.08	1.56	36.5
Appro	ach		699	6.4	699	6.4	0.845	18.1	LOS B	14.8	109.5	1.00	1.08	1.56	39.3
All Ve	hicles		2081	5.4	2081	5.4	0.851	15.4	LOS B	14.8	109.5	0.85	0.90	1.28	39.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab)

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 14 December 2022 1:26:49 PM Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Carrs Drive Intersection.sip9

♥ Site: 101 [2033 DES PM Sens - Trigger (350 Lots + NC) (Site

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Yamba Road / Carrs Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)												
1	L2	All MCs	166	6.8	166	6.8	0.460	8.6	LOSA	3.6	25.7	0.82	0.75	0.86	37.4
3	R2	All MCs	185	0.0	185	0.0	0.460	12.7	LOSA	3.6	25.7	0.82	0.75	0.86	42.2
Appro	ach		352	3.2	352	3.2	0.460	10.7	LOSA	3.6	25.7	0.82	0.75	0.86	40.2
East:	Yamba	a Rd (E)													
4	L2	All MCs	319	3.3	319	3.3	0.761	8.3	LOSA	10.8	76.9	0.86	0.68	0.96	44.5
5	T1	All MCs	528	2.1	528	2.1	0.761	8.5	LOSA	10.8	76.9	0.86	0.68	0.96	47.5
6u	U	All MCs	6	0.0	6	0.0	0.761	14.5	LOSA	10.8	76.9	0.86	0.68	0.96	48.7
Appro	ach		854	2.5	854	2.5	0.761	8.5	LOSA	10.8	76.9	0.86	0.68	0.96	46.5
West:	Yamb	a Rd (W)													
11	T1	All MCs	623	2.4	623	2.4	0.723	6.7	LOSA	8.9	63.0	0.78	0.60	0.80	47.4
12	R2	All MCs	234	0.0	234	0.0	0.723	10.8	LOSA	8.9	63.0	0.78	0.60	0.80	39.6
12u	U	All MCs	1	0.0	1	0.0	0.723	12.7	LOSA	8.9	63.0	0.78	0.60	0.80	43.8
Appro	ach		858	1.7	858	1.7	0.723	7.8	LOSA	8.9	63.0	0.78	0.60	0.80	45.9
All Ve	hicles		2063	2.3	2063	2.3	0.761	8.6	LOSA	10.8	76.9	0.82	0.66	0.88	45.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

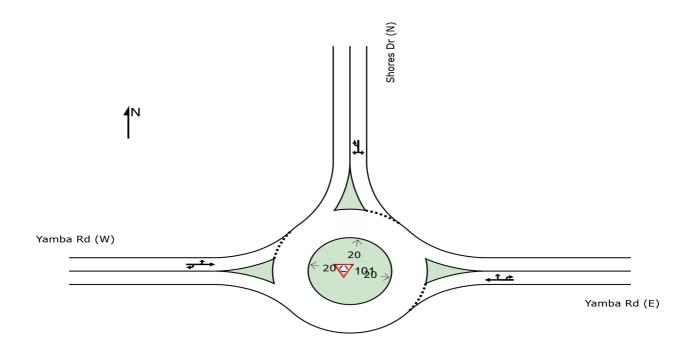
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 14 December 2022 1:26:50 PM


SITE LAYOUT

₩ Site: 101 [2033 BG AM (Site Folder: Yamba Road / Shores

Drive)]

Yamba Road / Shores Drive Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Created: Monday, 8 May 2023 11:06:14 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Shores Drive Intersection.sip9

Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	594	4.1	594	4.1	0.458	4.3	LOSA	4.3	30.9	0.21	0.43	0.21	53.0
6	R2	All MCs	116	4.0	116	4.0	0.458	8.9	LOSA	4.3	30.9	0.21	0.43	0.21	52.0
6u	U	All MCs	4	0.0	4	0.0	0.458	11.0	LOSA	4.3	30.9	0.21	0.43	0.21	52.9
Appro	ach		714	4.1	714	4.1	0.458	5.1	LOSA	4.3	30.9	0.21	0.43	0.21	52.9
North:	Shore	es Dr (N)													
7	L2	All MCs	229	1.5	229	1.5	0.348	8.9	LOSA	2.4	16.9	0.81	0.73	0.81	49.9
9	R2	All MCs	25	2.0	25	2.0	0.348	13.8	LOSA	2.4	16.9	0.81	0.73	0.81	48.3
9u	U	All MCs	1	0.0	1	0.0	0.348	15.7	LOS B	2.4	16.9	0.81	0.73	0.81	48.4
Appro	ach		256	1.5	256	1.5	0.348	9.4	LOSA	2.4	16.9	0.81	0.73	0.81	49.8
West:	Yamb	a Rd (W)													
10	L2	All MCs	34	4.2	34	4.2	0.551	4.9	LOSA	4.7	33.9	0.45	0.45	0.45	51.2
11	T1	All MCs	700	4.7	700	4.7	0.551	5.1	LOSA	4.7	33.9	0.45	0.45	0.45	52.4
12u	U	All MCs	2	0.0	2	0.0	0.551	11.7	LOSA	4.7	33.9	0.45	0.45	0.45	50.7
Appro	ach		736	4.7	736	4.7	0.551	5.1	LOSA	4.7	33.9	0.45	0.45	0.45	52.3
All Ve	hicles		1705	3.9	1705	3.9	0.551	5.8	LOSA	4.7	33.9	0.40	0.48	0.40	52.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:08 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Shores Drive Intersection.sip9

▼ Site: 101 [2033 BG PM (Site Folder: Yamba Road / Shores

Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	t Perfo	rma	nce						_				
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	628	2.2	628	2.2	0.496	4.3	LOSA	4.7	33.6	0.20	0.44	0.20	53.0
6	R2	All MCs	159	2.2	159	2.2	0.496	8.9	LOSA	4.7	33.6	0.20	0.44	0.20	52.0
6u	U	All MCs	2	0.0	2	0.0	0.496	11.0	LOSA	4.7	33.6	0.20	0.44	0.20	52.8
Appro	ach		789	2.2	789	2.2	0.496	5.2	LOSA	4.7	33.6	0.20	0.44	0.20	52.8
North	: Shore	es Dr (N)													
7	L2	All MCs	126	2.7	126	2.7	0.190	7.8	LOSA	1.2	8.5	0.72	0.69	0.72	50.6
9	R2	All MCs	21	0.0	21	0.0	0.190	12.5	LOSA	1.2	8.5	0.72	0.69	0.72	49.2
9u	U	All MCs	1	0.0	1	0.0	0.190	14.6	LOS B	1.2	8.5	0.72	0.69	0.72	49.2
Appro	ach		148	2.3	148	2.3	0.190	8.5	LOSA	1.2	8.5	0.72	0.69	0.72	50.4
West:	Yamb	a Rd (W))												
10	L2	All MCs	37	3.4	37	3.4	0.524	5.1	LOSA	4.1	29.6	0.49	0.48	0.49	51.0
11	T1	All MCs	629	2.4	629	2.4	0.524	5.3	LOSA	4.1	29.6	0.49	0.48	0.49	52.2
12u	U	All MCs	4	0.0	4	0.0	0.524	12.0	LOSA	4.1	29.6	0.49	0.48	0.49	50.5
Appro	ach		671	2.4	671	2.4	0.524	5.4	LOSA	4.1	29.6	0.49	0.48	0.49	52.2
All Ve	hicles		1608	2.3	1608	2.3	0.524	5.6	LOSA	4.7	33.6	0.37	0.48	0.37	52.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:09 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Shores Drive Intersection.sip9

Site: 101 [2043 BG AM (Site Folder: Yamba Road / Shores

Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID		Mov Class	Dem Fl	nand lows HV]	Ar	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	680	4.1	680	4.1	0.520	4.3	LOSA	5.5	39.5	0.24	0.42	0.24	52.9
6	R2	All MCs	125	4.0	125	4.0	0.520	9.0	LOSA	5.5	39.5	0.24	0.42	0.24	51.9
6u	U	All MCs	5	0.0	5	0.0	0.520	11.0	LOS A	5.5	39.5	0.24	0.42	0.24	52.7
Appro	ach		811	4.1	811	4.1	0.520	5.1	LOSA	5.5	39.5	0.24	0.42	0.24	52.7
North:	Shore	es Dr (N)													
7	L2	All MCs	248	1.5	248	1.5	0.428	10.9	LOSA	3.3	23.4	0.89	0.80	0.96	48.5
9	R2	All MCs	27	2.0	27	2.0	0.428	15.7	LOS B	3.3	23.4	0.89	0.80	0.96	46.8
9u	U	All MCs	1	0.0	1	0.0	0.428	17.7	LOS B	3.3	23.4	0.89	0.80	0.96	46.9
Appro	ach		277	1.5	277	1.5	0.428	11.4	LOSA	3.3	23.4	0.89	0.80	0.96	48.3
West:	Yamb	a Rd (W)													
10	L2	All MCs	36	4.2	36	4.2	0.629	5.1	LOSA	6.0	43.6	0.53	0.47	0.53	50.8
11	T1	All MCs	794	4.7	794	4.7	0.629	5.4	LOSA	6.0	43.6	0.53	0.47	0.53	52.0
12u	U	All MCs	2	0.0	2	0.0	0.629	12.0	LOSA	6.0	43.6	0.53	0.47	0.53	50.3
Appro	ach		832	4.7	832	4.7	0.629	5.4	LOSA	6.0	43.6	0.53	0.47	0.53	52.0
All Ve	hicles		1919	4.0	1919	4.0	0.629	6.1	LOSA	6.0	43.6	0.46	0.50	0.47	51.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:10 AM

Site: 101 [2043 BG PM (Site Folder: Yamba Road / Shores

Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	709	2.2	709	2.2	0.555	4.3	LOSA	5.9	41.9	0.23	0.43	0.23	52.9
6	R2	All MCs	172	2.2	172	2.2	0.555	8.9	LOSA	5.9	41.9	0.23	0.43	0.23	51.9
6u	U	All MCs	2	0.0	2	0.0	0.555	11.0	LOSA	5.9	41.9	0.23	0.43	0.23	52.7
Appro	ach		883	2.2	883	2.2	0.555	5.2	LOSA	5.9	41.9	0.23	0.43	0.23	52.7
North	: Shore	es Dr (N)													
7	L2	All MCs	137	2.7	137	2.7	0.230	8.7	LOSA	1.5	10.9	0.79	0.72	0.79	49.9
9	R2	All MCs	22	0.0	22	0.0	0.230	13.4	LOSA	1.5	10.9	0.79	0.72	0.79	48.4
9u	U	All MCs	1	0.0	1	0.0	0.230	15.5	LOS B	1.5	10.9	0.79	0.72	0.79	48.4
Appro	ach		160	2.3	160	2.3	0.230	9.4	LOSA	1.5	10.9	0.79	0.72	0.79	49.7
West	Yamb	a Rd (W))												
10	L2	All MCs	39	3.4	39	3.4	0.604	5.4	LOSA	5.3	38.2	0.57	0.50	0.57	50.6
11	T1	All MCs	722	2.4	722	2.4	0.604	5.6	LOSA	5.3	38.2	0.57	0.50	0.57	51.9
12u	U	All MCs	5	0.0	5	0.0	0.604	12.3	LOSA	5.3	38.2	0.57	0.50	0.57	50.1
Appro	ach		766	2.4	766	2.4	0.604	5.6	LOSA	5.3	38.2	0.57	0.50	0.57	51.8
All Ve	hicles		1809	2.3	1809	2.3	0.604	5.8	LOSA	5.9	41.9	0.42	0.49	0.42	52.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:10 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Shores Drive Intersection.sip9

Shores Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	Perfo	rmaı	nce										
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamb	a Rd (E)													
5	T1	All MCs	653	4.1	653	4.1	0.507	4.3	LOSA	5.2	37.5	0.24	0.43	0.24	52.9
6	R2	All MCs	128	4.0	128	4.0	0.507	9.0	LOSA	5.2	37.5	0.24	0.43	0.24	51.9
6u	U	All MCs	5	0.0	5	0.0	0.507	11.0	LOSA	5.2	37.5	0.24	0.43	0.24	52.7
Appro	ach		786	4.1	786	4.1	0.507	5.1	LOSA	5.2	37.5	0.24	0.43	0.24	52.7
North	Shor	es Dr (N)													
7	L2	All MCs	255	1.5	255	1.5	0.424	10.4	LOSA	3.2	22.8	0.88	0.79	0.93	48.8
9	R2	All MCs	28	2.0	28	2.0	0.424	15.2	LOS B	3.2	22.8	0.88	0.79	0.93	47.2
9u	U	All MCs	1	0.0	1	0.0	0.424	17.2	LOS B	3.2	22.8	0.88	0.79	0.93	47.3
Appro	ach		284	1.5	284	1.5	0.424	10.9	LOSA	3.2	22.8	0.88	0.79	0.93	48.7
West:	Yamb	a Rd (W)													
10	L2	All MCs	37	4.2	37	4.2	0.611	5.1	LOSA	5.6	41.0	0.52	0.47	0.52	50.8
11	T1	All MCs	764	4.7	764	4.7	0.611	5.3	LOSA	5.6	41.0	0.52	0.47	0.52	52.1
12u	U	All MCs	2	0.0	2	0.0	0.611	12.0	LOSA	5.6	41.0	0.52	0.47	0.52	50.4
Appro	ach		803	4.7	803	4.7	0.611	5.4	LOSA	5.6	41.0	0.52	0.47	0.52	52.0
All Ve	hicles		1874	3.9	1874	3.9	0.611	6.1	LOSA	5.6	41.0	0.46	0.50	0.47	51.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:11 AM

Shores Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

		ovement								0.50/ 5			= **		
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	684	2.2	684	2.2	0.543	4.3	LOSA	5.6	39.9	0.23	0.44	0.23	52.9
6	R2	All MCs	176	2.2	176	2.2	0.543	8.9	LOSA	5.6	39.9	0.23	0.44	0.23	51.9
6u	U	All MCs	2	0.0	2	0.0	0.543	11.0	LOSA	5.6	39.9	0.23	0.44	0.23	52.7
Appro	ach		862	2.2	862	2.2	0.543	5.3	LOSA	5.6	39.9	0.23	0.44	0.23	52.7
North:	: Shore	es Dr (N)													
7	L2	All MCs	140	2.7	140	2.7	0.226	8.4	LOSA	1.5	10.6	0.77	0.71	0.77	50.1
9	R2	All MCs	22	0.0	22	0.0	0.226	13.1	LOSA	1.5	10.6	0.77	0.71	0.77	48.7
9u	U	All MCs	1	0.0	1	0.0	0.226	15.2	LOS B	1.5	10.6	0.77	0.71	0.77	48.7
Appro	ach		163	2.3	163	2.3	0.226	9.1	LOSA	1.5	10.6	0.77	0.71	0.77	49.9
West:	Yamb	a Rd (W)													
10	L2	All MCs	40	3.4	40	3.4	0.585	5.4	LOSA	5.0	35.8	0.56	0.50	0.56	50.6
11	T1	All MCs	693	2.4	693	2.4	0.585	5.6	LOSA	5.0	35.8	0.56	0.50	0.56	51.9
12u	U	All MCs	5	0.0	5	0.0	0.585	12.2	LOSA	5.0	35.8	0.56	0.50	0.56	50.2
Appro	ach		738	2.4	738	2.4	0.585	5.6	LOSA	5.0	35.8	0.56	0.50	0.56	51.8
All Ve	hicles		1763	2.3	1763	2.3	0.585	5.8	LOSA	5.6	39.9	0.42	0.49	0.42	52.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:11 AM

Shores Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	748	4.1	748	4.1	0.578	4.4	LOS A	6.7	48.8	0.29	0.42	0.29	52.7
6	R2	All MCs	140	4.0	140	4.0	0.578	9.0	LOSA	6.7	48.8	0.29	0.42	0.29	51.7
6u	U	All MCs	5	0.0	5	0.0	0.578	11.1	LOS A	6.7	48.8	0.29	0.42	0.29	52.5
Appro	ach		894	4.1	894	4.1	0.578	5.2	LOSA	6.7	48.8	0.29	0.42	0.29	52.5
North	: Shore	es Dr (N)													
7	L2	All MCs	276	1.5	276	1.5	0.541	14.8	LOS B	5.0	35.5	0.98	0.91	1.22	45.8
9	R2	All MCs	31	2.0	31	2.0	0.541	19.7	LOS B	5.0	35.5	0.98	0.91	1.22	44.1
9u	U	All MCs	1	0.0	1	0.0	0.541	21.6	LOS B	5.0	35.5	0.98	0.91	1.22	44.1
Appro	ach		307	1.5	307	1.5	0.541	15.3	LOS B	5.0	35.5	0.98	0.91	1.22	45.7
West	Yamb	a Rd (W)													
10	L2	All MCs	39	4.2	39	4.2	0.699	5.4	LOSA	7.5	54.7	0.62	0.50	0.62	50.3
11	T1	All MCs	868	4.7	868	4.7	0.699	5.7	LOSA	7.5	54.7	0.62	0.50	0.62	51.6
12u	U	All MCs	3	0.0	3	0.0	0.699	12.3	LOSA	7.5	54.7	0.62	0.50	0.62	49.9
Appro	ach		911	4.7	911	4.7	0.699	5.7	LOSA	7.5	54.7	0.62	0.50	0.62	51.5
All Ve	hicles		2112	4.0	2112	4.0	0.699	6.9	LOSA	7.5	54.7	0.53	0.53	0.57	51.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:12 AM Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Shores Drive Intersection.sip9

Shores Drive)1

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamb	a Rd (E)													
5	T1	All MCs	773	2.2	773	2.2	0.609	4.4	LOSA	7.2	51.6	0.27	0.43	0.27	52.7
6	R2	All MCs	191	2.2	191	2.2	0.609	9.0	LOSA	7.2	51.6	0.27	0.43	0.27	51.8
6u	U	All MCs	3	0.0	3	0.0	0.609	11.0	LOSA	7.2	51.6	0.27	0.43	0.27	52.5
Appro	ach		966	2.2	966	2.2	0.609	5.3	LOSA	7.2	51.6	0.27	0.43	0.27	52.5
North	: Shor	es Dr (N)													
7	L2	All MCs	152	2.7	152	2.7	0.286	9.6	LOSA	2.0	14.4	0.86	0.76	0.86	49.2
9	R2	All MCs	24	0.0	24	0.0	0.286	14.3	LOS A	2.0	14.4	0.86	0.76	0.86	47.7
9u	U	All MCs	1	0.0	1	0.0	0.286	16.4	LOS B	2.0	14.4	0.86	0.76	0.86	47.7
Appro	ach		177	2.3	177	2.3	0.286	10.3	LOSA	2.0	14.4	0.86	0.76	0.86	49.0
West:	Yamb	a Rd (W))												
10	L2	All MCs	43	3.4	43	3.4	0.678	5.8	LOSA	6.7	47.6	0.66	0.54	0.66	50.1
11	T1	All MCs	796	2.4	796	2.4	0.678	6.0	LOSA	6.7	47.6	0.66	0.54	0.66	51.4
12u	U	All MCs	5	0.0	5	0.0	0.678	12.6	LOSA	6.7	47.6	0.66	0.54	0.66	49.7
Appro	ach		844	2.4	844	2.4	0.678	6.0	LOSA	6.7	47.6	0.66	0.54	0.66	51.4
All Ve	hicles		1987	2.3	1987	2.3	0.678	6.1	LOSA	7.2	51.6	0.49	0.51	0.49	51.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:13 AM Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Shores Drive Intersection.sip9

Site: 101 [2033 DES AM - Carrs Dr Only (Site Folder: Yamba

Road / Shores Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None) Roundabout

North: Shores Dr (N)

U

West: Yamba Rd (W)

10 L2 All MCs

7

9u

11

12u

tab).

Approach

L2 All MCs

R2 All MCs

T1 All MCs

All MCs

All MCs

ID Class Flows Flows Satn Delay Service [Total HV]				nce	rma	Perfo	vement	cle Mo	Vehi
veh/h % veh/h % v/c sec	Level of Service			Flows [Total HV]	ows HV]	FI [Total]		Turn	
East: Vamba Dd (E)		sec	v/c	veh/h %	%	veh/h	D4 (E)	Vombo	Foot:
East: Yamba Rd (E)							a Ru (⊏)	ramba	zası.
5 T1 All MCs 691 4.1 691 4.1 0.524 4.4 LOS	LOSA	4.4	0.524	691 4.1	4.1	691	All MCs	T1	5
R2 All MCs 116 4.0 116 4.0 0.524 9.0 LOS	LOSA	9.0	0.524	116 4.0	4.0	116	All MCs	R2	6
6u U All MCs 4 0.0 4 0.0 0.524 11.0 LOS	LOSA	11.0	0.524	4 0.0	0.0	4	All MCs	U	6u
Approach 811 4.1 811 4.1 0.524 5.1 LOS	LOS A	5.1	0.524	811 4.1	4.1	811		oach	Appro

229 1.5

29 2.0

1

260 1.6

42 4.2

873 4.7

2 0.0

0.0

0.447

0.447

0.447

0.447

0.680

0.680

0.680

229 1.5

29 2.0

0.0

1

260 1.6

42 4.2

873 4.7

2 0.0

Site Level of Service (LOS)	Metho	od: Del	lav (RTA	A NSW). Si	te LOS	S Method is	specified	in the Pa	arameter	Settings of	dialog (Or	otions
All Vehicles	1987	4.0	1987	4.0	0.680	6.3	LOSA	7.2	52.6	0.48	0.50	0.50	51.5
Approach	917	4.7	917	4.7	0.680	5.4	LOSA	7.2	52.6	0.56	0.47	0.56	51.8

95% Back Of

Queue

5.6

5.6

5.6

5.6

3.6

3.6

3.6

3.6

7.2

7.2

7.2

LOS A

LOS B

LOS B

LOS A

LOS A

LOS A

LOS A

12.5

17.4

19.4

13.1

5.1

5.4

12.0

Dist]

40.3

40.3

40.3

40.3

25.6

25.6

25.6

25.6

52.6

52.6

52.6

Prop. Que

0.26

0.26

0.26

0.26

0.93

0.93

0.93

0.93

0.56

0.56

0.56

No. of

Cycles

0.26

0.26

0.26

0.26

1.05

1.05

1.05

1.05

0.56

0.56

0.56

Speed

52.9

51.9

52.7

52.7

47.3

45.5

45.6

47.1

50.6

51.9

50.2

Stop

Rate

0.42

0.42

0.42

0.42

0.84

0.84

0.84

0.84

0.47

0.47

0.47

Vehicle movement LOS values are based on average delay per movement.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:13 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Shores Drive Intersection.sip9

♥ Site: 101 [2033 DES PM - Carrs Dr Only (Site Folder: Yamba

Road / Shores Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	832	2.2	832	2.2	0.628	4.4	LOS A	7.7	54.6	0.29	0.42	0.29	52.7
6	R2	All MCs	159	2.2	159	2.2	0.628	9.0	LOSA	7.7	54.6	0.29	0.42	0.29	51.8
6u	U	All MCs	2	0.0	2	0.0	0.628	11.1	LOS A	7.7	54.6	0.29	0.42	0.29	52.6
Appro	ach		993	2.2	993	2.2	0.628	5.1	LOSA	7.7	54.6	0.29	0.42	0.29	52.6
North:	Shore	es Dr (N)													
7	L2	All MCs	126	2.7	126	2.7	0.222	8.7	LOSA	1.5	10.4	0.79	0.73	0.79	49.8
9	R2	All MCs	27	0.0	27	0.0	0.222	13.4	LOSA	1.5	10.4	0.79	0.73	0.79	48.3
9u	U	All MCs	1	0.0	1	0.0	0.222	15.5	LOS B	1.5	10.4	0.79	0.73	0.79	48.3
Appro	ach		155	2.2	155	2.2	0.222	9.6	LOSA	1.5	10.4	0.79	0.73	0.79	49.5
West:	Yamb	a Rd (W)													
10	L2	All MCs	42	3.4	42	3.4	0.601	5.3	LOS A	5.4	38.6	0.55	0.49	0.55	50.7
11	T1	All MCs	725	2.4	725	2.4	0.601	5.5	LOSA	5.4	38.6	0.55	0.49	0.55	51.9
12u	U	All MCs	4	0.0	4	0.0	0.601	12.1	LOS A	5.4	38.6	0.55	0.49	0.55	50.2
Appro	ach		772	2.4	772	2.4	0.601	5.5	LOSA	5.4	38.6	0.55	0.49	0.55	51.9
All Ve	hicles		1919	2.3	1919	2.3	0.628	5.7	LOSA	7.7	54.6	0.43	0.48	0.43	52.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:14 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Shores Drive Intersection.sip9

Site: 101 [2033 DES AM Sens - Carrs Dr Only (Site Folder:

Yamba Road / Shores Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None) Roundabout

10

11

12u

Approach

All Vehicles

L2 All MCs

T1 All MCs

All MCs

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	FI	nand lows		rival ows	Deg. Satn	Aver. Delay	Level of Service		Back Of leue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m		rtate	Cycles	km/h
East:	Yamb	a Rd (E)													
5	T1	All MCs	749	4.1	749	4.1	0.573	4.4	LOSA	6.7	48.7	0.30	0.42	0.30	52.7
6	R2	All MCs	128	4.0	128	4.0	0.573	9.0	LOSA	6.7	48.7	0.30	0.42	0.30	51.7
6u	U	All MCs	5	0.0	5	0.0	0.573	11.1	LOSA	6.7	48.7	0.30	0.42	0.30	52.5
Appro	ach		883	4.1	883	4.1	0.573	5.1	LOSA	6.7	48.7	0.30	0.42	0.30	52.5
North	Shor	es Dr (N)													
7	L2	All MCs	255	1.5	255	1.5	0.567	17.3	LOS B	5.4	38.6	1.00	0.95	1.31	44.2
9	R2	All MCs	33	2.0	33	2.0	0.567	22.2	LOS B	5.4	38.6	1.00	0.95	1.31	42.4
9u	U	All MCs	1	0.0	1	0.0	0.567	24.2	LOS B	5.4	38.6	1.00	0.95	1.31	42.5
Appro	ach		288	1.6	288	1.6	0.567	17.9	LOS B	5.4	38.6	1.00	0.95	1.31	44.0
West:	Yamb	a Rd (W)													

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

5.5

5.7

12.3

5.7

7.1

LOS A

LOS A

LOS A

LOS A

LOS A

8.8

8.8

8.8

8.8

8.8

64.3

64.3

64.3

64.3

64.3

0.66

0.66

0.66

0.66

0.56

0.51

0.51

0.51

0.51

0.53

0.66

0.66

0.66

0.66

0.60

50.1

51.4

49.7

51.4

50.7

Vehicle movement LOS values are based on average delay per movement.

2156 4.0 2156 4.0

45 4.2

937 4.7

984 4.7

2 0.0

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

0.742

0.742

0.742

0.742

0.742

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

45 4.2

937 4.7

984 4.7

2 0.0

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:15 AM

♥ Site: 101 [2033 DES PM Sens - Carrs Dr Only (Site Folder:

Yamba Road / Shores Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

		ovement													
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	886	2.2	886	2.2	0.676	4.5	LOS A	9.2	65.6	0.34	0.42	0.34	52.5
6	R2	All MCs	176	2.2	176	2.2	0.676	9.1	LOSA	9.2	65.6	0.34	0.42	0.34	51.6
6u	U	All MCs	2	0.0	2	0.0	0.676	11.1	LOS A	9.2	65.6	0.34	0.42	0.34	52.4
Appro	ach		1064	2.2	1064	2.2	0.676	5.2	LOSA	9.2	65.6	0.34	0.42	0.34	52.3
North:	Shore	es Dr (N)													
7	L2	All MCs	140	2.7	140	2.7	0.271	9.5	LOSA	1.9	13.4	0.85	0.75	0.85	49.2
9	R2	All MCs	29	0.0	29	0.0	0.271	14.2	LOSA	1.9	13.4	0.85	0.75	0.85	47.7
9u	U	All MCs	1	0.0	1	0.0	0.271	16.3	LOS B	1.9	13.4	0.85	0.75	0.85	47.7
Appro	ach		171	2.2	171	2.2	0.271	10.4	LOSA	1.9	13.4	0.85	0.75	0.85	48.9
West:	Yamb	a Rd (W)													
10	L2	All MCs	46	3.4	46	3.4	0.665	5.6	LOS A	6.6	47.1	0.64	0.52	0.64	50.3
11	T1	All MCs	788	2.4	788	2.4	0.665	5.8	LOSA	6.6	47.1	0.64	0.52	0.64	51.5
12u	U	All MCs	5	0.0	5	0.0	0.665	12.4	LOS A	6.6	47.1	0.64	0.52	0.64	49.8
Appro	ach		840	2.4	840	2.4	0.665	5.8	LOSA	6.6	47.1	0.64	0.52	0.64	51.5
All Ve	hicles		2075	2.3	2075	2.3	0.676	5.9	LOSA	9.2	65.6	0.50	0.49	0.50	51.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:15 AM

Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	589	4.1	589	4.1	0.453	4.3	LOSA	4.2	30.2	0.20	0.43	0.20	53.1
6	R2	All MCs	116	4.0	116	4.0	0.453	8.9	LOSA	4.2	30.2	0.20	0.43	0.20	52.1
6u	U	All MCs	4	0.0	4	0.0	0.453	11.0	LOSA	4.2	30.2	0.20	0.43	0.20	52.9
Appro	oach		709	4.1	709	4.1	0.453	5.1	LOSA	4.2	30.2	0.20	0.43	0.20	52.9
North	: Shor	es Dr (N)													
7	L2	All MCs	229	1.5	229	1.5	0.336	8.6	LOSA	2.3	16.1	0.79	0.72	0.79	50.1
9	R2	All MCs	23	2.0	23	2.0	0.336	13.5	LOSA	2.3	16.1	0.79	0.72	0.79	48.5
9u	U	All MCs	1	0.0	1	0.0	0.336	15.5	LOS B	2.3	16.1	0.79	0.72	0.79	48.6
Appro	oach		254	1.5	254	1.5	0.336	9.1	LOSA	2.3	16.1	0.79	0.72	0.79	50.0
West	: Yamb	a Rd (W))												
10	L2	All MCs	32	4.2	32	4.2	0.533	4.9	LOSA	4.4	31.8	0.44	0.45	0.44	51.2
11	T1	All MCs	677	4.7	677	4.7	0.533	5.1	LOSA	4.4	31.8	0.44	0.45	0.44	52.4
12u	U	All MCs	2	0.0	2	0.0	0.533	11.7	LOSA	4.4	31.8	0.44	0.45	0.44	50.8
Appro	oach		711	4.7	711	4.7	0.533	5.1	LOSA	4.4	31.8	0.44	0.45	0.44	52.4
All Ve	hicles		1674	3.9	1674	3.9	0.533	5.7	LOSA	4.4	31.8	0.39	0.48	0.39	52.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:16 AM

▼ Site: 101 [2033 DES PM (Site Folder: Yamba Road / Shores

Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

Vehic	:le Mo	ovement	Perfo	rma	nce										
Mov ID		Mov Class	Dem Fl	nand lows HV]	Ar	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamb	a Rd (E)													
5	T1	All MCs	599	2.2	599	2.2	0.471	4.2	LOSA	4.3	30.6	0.17	0.44	0.17	53.1
6	R2	All MCs	159	2.2	159	2.2	0.471	8.9	LOSA	4.3	30.6	0.17	0.44	0.17	52.1
6u	U	All MCs	2	0.0	2	0.0	0.471	10.9	LOSA	4.3	30.6	0.17	0.44	0.17	52.9
Appro	ach		760	2.2	760	2.2	0.471	5.2	LOSA	4.3	30.6	0.17	0.44	0.17	52.9
North	: Shor	es Dr (N)													
7	L2	All MCs	126	2.7	126	2.7	0.185	7.8	LOSA	1.2	8.2	0.72	0.69	0.72	50.6
9	R2	All MCs	16	0.0	16	0.0	0.185	12.5	LOSA	1.2	8.2	0.72	0.69	0.72	49.2
9u	U	All MCs	1	0.0	1	0.0	0.185	14.6	LOS B	1.2	8.2	0.72	0.69	0.72	49.2
Appro	ach		143	2.4	143	2.4	0.185	8.4	LOSA	1.2	8.2	0.72	0.69	0.72	50.5
West:	Yamb	a Rd (W))												
10	L2	All MCs	36	3.4	36	3.4	0.528	5.2	LOSA	4.2	29.9	0.49	0.48	0.49	51.0
11	T1	All MCs	638	2.4	638	2.4	0.528	5.4	LOSA	4.2	29.9	0.49	0.48	0.49	52.2
12u	U	All MCs	4	0.0	4	0.0	0.528	12.0	LOSA	4.2	29.9	0.49	0.48	0.49	50.5
Appro	ach		678	2.4	678	2.4	0.528	5.4	LOSA	4.2	29.9	0.49	0.48	0.49	52.2
All Ve	hicles		1581	2.3	1581	2.3	0.528	5.6	LOSA	4.3	30.6	0.36	0.48	0.36	52.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:17 AM

Shores Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

		ovement													
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	649	4.1	649	4.1	0.501	4.3	LOSA	5.0	36.6	0.23	0.43	0.23	52.9
6	R2	All MCs	128	4.0	128	4.0	0.501	9.0	LOSA	5.0	36.6	0.23	0.43	0.23	52.0
6u	U	All MCs	5	0.0	5	0.0	0.501	11.0	LOSA	5.0	36.6	0.23	0.43	0.23	52.8
Appro	ach		783	4.1	783	4.1	0.501	5.1	LOSA	5.0	36.6	0.23	0.43	0.23	52.8
North	: Shore	es Dr (N)													
7	L2	All MCs	255	1.5	255	1.5	0.407	9.8	LOSA	3.0	21.0	0.86	0.76	0.88	49.3
9	R2	All MCs	25	2.0	25	2.0	0.407	14.6	LOS B	3.0	21.0	0.86	0.76	0.88	47.7
9u	U	All MCs	1	0.0	1	0.0	0.407	16.6	LOS B	3.0	21.0	0.86	0.76	0.88	47.8
Appro	ach		281	1.5	281	1.5	0.407	10.2	LOSA	3.0	21.0	0.86	0.76	0.88	49.2
West:	Yamb	a Rd (W)													
10	L2	All MCs	35	4.2	35	4.2	0.592	5.1	LOSA	5.3	38.5	0.50	0.47	0.50	50.9
11	T1	All MCs	741	4.7	741	4.7	0.592	5.3	LOSA	5.3	38.5	0.50	0.47	0.50	52.1
12u	U	All MCs	2	0.0	2	0.0	0.592	11.9	LOSA	5.3	38.5	0.50	0.47	0.50	50.5
Appro	ach		778	4.7	778	4.7	0.592	5.3	LOSA	5.3	38.5	0.50	0.47	0.50	52.1
All Ve	hicles		1842	3.9	1842	3.9	0.592	6.0	LOSA	5.3	38.5	0.44	0.50	0.44	51.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:17 AM

Shores Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	654	2.2	654	2.2	0.518	4.3	LOSA	5.1	36.5	0.20	0.44	0.20	53.0
6	R2	All MCs	176	2.2	176	2.2	0.518	8.9	LOSA	5.1	36.5	0.20	0.44	0.20	52.0
6u	U	All MCs	2	0.0	2	0.0	0.518	11.0	LOSA	5.1	36.5	0.20	0.44	0.20	52.8
Appro	ach		832	2.2	832	2.2	0.518	5.3	LOSA	5.1	36.5	0.20	0.44	0.20	52.8
North	: Shore	es Dr (N)													
7	L2	All MCs	140	2.7	140	2.7	0.222	8.5	LOSA	1.5	10.4	0.78	0.72	0.78	50.1
9	R2	All MCs	18	0.0	18	0.0	0.222	13.2	LOSA	1.5	10.4	0.78	0.72	0.78	48.7
9u	U	All MCs	1	0.0	1	0.0	0.222	15.3	LOS B	1.5	10.4	0.78	0.72	0.78	48.7
Appro	ach		159	2.4	159	2.4	0.222	9.1	LOSA	1.5	10.4	0.78	0.72	0.78	50.0
West:	Yamb	a Rd (W)													
10	L2	All MCs	39	3.4	39	3.4	0.590	5.4	LOSA	5.1	36.2	0.56	0.50	0.56	50.6
11	T1	All MCs	701	2.4	701	2.4	0.590	5.6	LOSA	5.1	36.2	0.56	0.50	0.56	51.9
12u	U	All MCs	5	0.0	5	0.0	0.590	12.3	LOSA	5.1	36.2	0.56	0.50	0.56	50.2
Appro	ach		745	2.4	745	2.4	0.590	5.7	LOSA	5.1	36.2	0.56	0.50	0.56	51.8
All Ve	hicles		1736	2.3	1736	2.3	0.590	5.8	LOSA	5.1	36.5	0.40	0.49	0.40	52.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:18 AM

Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

Vehic	ie Ma	ovement	t Perfo	rma	nce _							_			
Mov ID		Mov Class	Dem Fl	nand lows HV]	Ar	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamb	a Rd (E)													
5	T1	All MCs	676	4.1	676	4.1	0.515	4.3	LOSA	5.3	38.7	0.23	0.42	0.23	52.9
6	R2	All MCs	125	4.0	125	4.0	0.515	9.0	LOSA	5.3	38.7	0.23	0.42	0.23	52.0
6u	U	All MCs	5	0.0	5	0.0	0.515	11.0	LOSA	5.3	38.7	0.23	0.42	0.23	52.8
Appro	ach		806	4.1	806	4.1	0.515	5.1	LOSA	5.3	38.7	0.23	0.42	0.23	52.8
North	Shor	es Dr (N)													
7	L2	All MCs	248	1.5	248	1.5	0.412	10.2	LOSA	3.1	21.7	0.87	0.78	0.91	48.9
9	R2	All MCs	25	2.0	25	2.0	0.412	15.1	LOS B	3.1	21.7	0.87	0.78	0.91	47.3
9u	U	All MCs	1	0.0	1	0.0	0.412	17.1	LOS B	3.1	21.7	0.87	0.78	0.91	47.4
Appro	ach		275	1.5	275	1.5	0.412	10.7	LOSA	3.1	21.7	0.87	0.78	0.91	48.8
West:	Yamb	a Rd (W))												
10	L2	All MCs	34	4.2	34	4.2	0.610	5.1	LOSA	5.6	41.0	0.51	0.47	0.51	50.9
11	T1	All MCs	771	4.7	771	4.7	0.610	5.3	LOSA	5.6	41.0	0.51	0.47	0.51	52.1
12u	U	All MCs	2	0.0	2	0.0	0.610	11.9	LOSA	5.6	41.0	0.51	0.47	0.51	50.4
Appro	ach		806	4.7	806	4.7	0.610	5.3	LOSA	5.6	41.0	0.51	0.47	0.51	52.0
All Ve	hicles		1887	4.0	1887	4.0	0.610	6.0	LOSA	5.6	41.0	0.44	0.49	0.45	51.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:19 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Shores Drive Intersection.sip9

♥ Site: 101 [2043 DES PM (Site Folder: Yamba Road / Shores

Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	679	2.2	679	2.2	0.531	4.3	LOSA	5.4	38.4	0.20	0.44	0.20	53.0
6	R2	All MCs	172	2.2	172	2.2	0.531	8.9	LOSA	5.4	38.4	0.20	0.44	0.20	52.0
6u	U	All MCs	2	0.0	2	0.0	0.531	11.0	LOSA	5.4	38.4	0.20	0.44	0.20	52.8
Appro	ach		853	2.2	853	2.2	0.531	5.2	LOSA	5.4	38.4	0.20	0.44	0.20	52.8
North	Shore	es Dr (N)													
7	L2	All MCs	137	2.7	137	2.7	0.227	8.8	LOSA	1.5	10.7	0.80	0.73	0.80	49.9
9	R2	All MCs	18	0.0	18	0.0	0.227	13.5	LOSA	1.5	10.7	0.80	0.73	0.80	48.4
9u	U	All MCs	1	0.0	1	0.0	0.227	15.6	LOS B	1.5	10.7	0.80	0.73	0.80	48.4
Appro	ach		156	2.4	156	2.4	0.227	9.4	LOSA	1.5	10.7	0.80	0.73	0.80	49.7
West:	Yamb	a Rd (W))												
10	L2	All MCs	38	3.4	38	3.4	0.609	5.4	LOSA	5.4	38.5	0.57	0.50	0.57	50.6
11	T1	All MCs	731	2.4	731	2.4	0.609	5.6	LOSA	5.4	38.5	0.57	0.50	0.57	51.9
12u	U	All MCs	5	0.0	5	0.0	0.609	12.3	LOSA	5.4	38.5	0.57	0.50	0.57	50.1
Appro	ach		774	2.4	774	2.4	0.609	5.7	LOSA	5.4	38.5	0.57	0.50	0.57	51.8
All Ve	hicles		1782	2.3	1782	2.3	0.609	5.8	LOSA	5.4	38.5	0.41	0.49	0.41	52.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:19 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Shores Drive Intersection.sip9

Shores Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	745	4.1	745	4.1	0.571	4.4	LOSA	6.6	47.6	0.27	0.42	0.27	52.8
6	R2	All MCs	140	4.0	140	4.0	0.571	9.0	LOSA	6.6	47.6	0.27	0.42	0.27	51.8
6u	U	All MCs	5	0.0	5	0.0	0.571	11.0	LOS A	6.6	47.6	0.27	0.42	0.27	52.6
Appro	ach		891	4.1	891	4.1	0.571	5.1	LOSA	6.6	47.6	0.27	0.42	0.27	52.6
North:	Shore	es Dr (N)													
7	L2	All MCs	276	1.5	276	1.5	0.514	13.6	LOSA	4.6	32.4	0.96	0.88	1.15	46.6
9	R2	All MCs	27	2.0	27	2.0	0.514	18.5	LOS B	4.6	32.4	0.96	0.88	1.15	44.9
9u	U	All MCs	1	0.0	1	0.0	0.514	20.4	LOS B	4.6	32.4	0.96	0.88	1.15	45.0
Appro	ach		304	1.5	304	1.5	0.514	14.0	LOSA	4.6	32.4	0.96	0.88	1.15	46.5
West:	Yamb	a Rd (W)													
10	L2	All MCs	37	4.2	37	4.2	0.679	5.4	LOSA	7.0	51.0	0.60	0.50	0.60	50.4
11	T1	All MCs	844	4.7	844	4.7	0.679	5.6	LOSA	7.0	51.0	0.60	0.50	0.60	51.7
12u	U	All MCs	3	0.0	3	0.0	0.679	12.2	LOS A	7.0	51.0	0.60	0.50	0.60	50.0
Appro	ach		884	4.7	884	4.7	0.679	5.6	LOSA	7.0	51.0	0.60	0.50	0.60	51.6
All Ve	hicles		2079	3.9	2079	3.9	0.679	6.7	LOSA	7.0	51.0	0.51	0.52	0.54	51.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:20 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Shores Drive Intersection.sip9

▼ Site: 101 [2043 DES PM Sens (Site Folder: Yamba Road /

Shores Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Shores Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	743	2.2	743	2.2	0.583	4.3	LOSA	6.6	47.1	0.23	0.43	0.23	52.9
6	R2	All MCs	191	2.2	191	2.2	0.583	8.9	LOSA	6.6	47.1	0.23	0.43	0.23	51.9
6u	U	All MCs	3	0.0	3	0.0	0.583	11.0	LOSA	6.6	47.1	0.23	0.43	0.23	52.7
Appro	ach		937	2.2	937	2.2	0.583	5.3	LOSA	6.6	47.1	0.23	0.43	0.23	52.7
North	: Shor	es Dr (N)													
7	L2	All MCs	152	2.7	152	2.7	0.281	9.7	LOSA	2.0	14.1	0.87	0.76	0.87	49.2
9	R2	All MCs	19	0.0	19	0.0	0.281	14.4	LOS A	2.0	14.1	0.87	0.76	0.87	47.7
9u	U	All MCs	1	0.0	1	0.0	0.281	16.5	LOS B	2.0	14.1	0.87	0.76	0.87	47.7
Appro	ach		172	2.4	172	2.4	0.281	10.3	LOSA	2.0	14.1	0.87	0.76	0.87	49.1
West:	Yamb	a Rd (W))												
10	L2	All MCs	42	3.4	42	3.4	0.682	5.8	LOSA	6.7	48.0	0.66	0.54	0.66	50.1
11	T1	All MCs	804	2.4	804	2.4	0.682	6.0	LOSA	6.7	48.0	0.66	0.54	0.66	51.4
12u	U	All MCs	5	0.0	5	0.0	0.682	12.7	LOSA	6.7	48.0	0.66	0.54	0.66	49.7
Appro	ach		852	2.4	852	2.4	0.682	6.1	LOSA	6.7	48.0	0.66	0.54	0.66	51.4
All Ve	hicles		1960	2.3	1960	2.3	0.682	6.0	LOSA	6.7	48.0	0.47	0.51	0.47	51.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

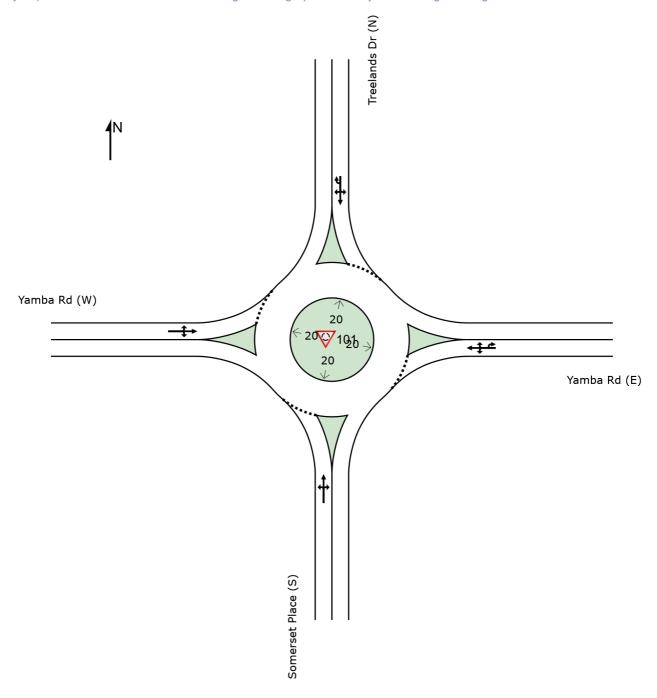
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.


SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Thursday, 4 May 2023 11:34:21 AM

SITE LAYOUT

▽ Site: 101 [2033 BG AM (Site Folder: General)]

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Som	erset Plac	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.013	7.8	LOSA	0.1	0.6	0.76	0.65	0.76	40.2
2	T1	All MCs	1	0.0	1	0.0	0.013	7.7	LOSA	0.1	0.6	0.76	0.65	0.76	23.0
3	R2	All MCs	5	0.0	5	0.0	0.013	12.2	LOSA	0.1	0.6	0.76	0.65	0.76	37.0
Appro	oach		8	0.0	8	0.0	0.013	10.5	LOSA	0.1	0.6	0.76	0.65	0.76	36.1
East:	Yamba	a Rd (E)													
4	L2	All MCs	4	0.0	4	0.0	0.540	5.2	LOSA	4.8	34.7	0.59	0.55	0.59	41.1
5	T1	All MCs	437	6.4	437	6.4	0.540	5.6	LOSA	4.8	34.7	0.59	0.55	0.59	47.3
6	R2	All MCs	195	0.8	195	8.0	0.540	10.1	LOSA	4.8	34.7	0.59	0.55	0.59	31.8
6u	U	All MCs	14	0.0	14	0.0	0.540	12.2	LOSA	4.8	34.7	0.59	0.55	0.59	44.8
Appro	oach		649	4.5	649	4.5	0.540	7.1	LOSA	4.8	34.7	0.59	0.55	0.59	42.7
North	: Treel	ands Dr (N)												
7	L2	All MCs	183	4.0	183	4.0	0.408	7.1	LOSA	2.8	20.5	0.72	0.69	0.72	39.7
8	T1	All MCs	2	0.0	2	0.0	0.408	7.2	LOSA	2.8	20.5	0.72	0.69	0.72	33.2
9	R2	All MCs	174	4.0	174	4.0	0.408	12.0	LOSA	2.8	20.5	0.72	0.69	0.72	41.8
9u	U	All MCs	4	0.0	4	0.0	0.408	13.9	LOSA	2.8	20.5	0.72	0.69	0.72	23.3
Appro	oach		363	3.9	363	3.9	0.408	9.5	LOSA	2.8	20.5	0.72	0.69	0.72	40.6
West	: Yamb	a Rd (W)													
10	L2	All MCs	133	6.1	133	6.1	0.502	5.6	LOSA	4.0	29.5	0.59	0.53	0.59	44.9
11	T1	All MCs	441	6.0	441	6.0	0.502	5.8	LOSA	4.0	29.5	0.59	0.53	0.59	47.7
12	R2	All MCs	2	0.0	2	0.0	0.502	10.3	LOSA	4.0	29.5	0.59	0.53	0.59	44.3
Appro	oach		576	6.0	576	6.0	0.502	5.8	LOSA	4.0	29.5	0.59	0.53	0.59	47.2
All Ve	hicles		1597	4.9	1597	4.9	0.540	7.2	LOSA	4.8	34.7	0.62	0.57	0.62	43.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

▼ Site: 101 [2033 BG PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows		rival ows HV]	Deg. Satn	Aver. Delay		95% B Que [Veh.	ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m Î			<u> </u>	km/h
Sout	h: Som	erset Plac	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.012	7.0	LOSA	0.1	0.5	0.72	0.62	0.72	41.4
2	T1	All MCs	2	0.0	2	0.0	0.012	7.0	LOSA	0.1	0.5	0.72	0.62	0.72	23.7
3	R2	All MCs	4	0.0	4	0.0	0.012	11.5	LOSA	0.1	0.5	0.72	0.62	0.72	38.2
Appr	oach		8	0.0	8	0.0	0.012	9.2	LOSA	0.1	0.5	0.72	0.62	0.72	35.6
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.477	5.2	LOSA	3.9	28.1	0.56	0.56	0.56	40.9
5	T1	All MCs	317	3.8	317	3.8	0.477	5.5	LOSA	3.9	28.1	0.56	0.56	0.56	47.1
6	R2	All MCs	236	1.1	236	1.1	0.477	10.1	LOSA	3.9	28.1	0.56	0.56	0.56	31.7
6u	U	All MCs	13	0.0	13	0.0	0.477	12.1	LOSA	3.9	28.1	0.56	0.56	0.56	44.6
Appr	oach		568	2.6	568	2.6	0.477	7.5	LOSA	3.9	28.1	0.56	0.56	0.56	40.9
North	n: Treel	ands Dr (N)												
7	L2	All MCs	277	1.5	277	1.5	0.508	7.5	LOSA	4.1	29.2	0.76	0.71	0.80	40.0
8	T1	All MCs	2	0.0	2	0.0	0.508	7.7	LOSA	4.1	29.2	0.76	0.71	0.80	33.0
9	R2	All MCs	179	3.2	179	3.2	0.508	12.4	LOSA	4.1	29.2	0.76	0.71	0.80	41.8
9u	U	All MCs	11	0.0	11	0.0	0.508	14.4	LOSA	4.1	29.2	0.76	0.71	0.80	23.1
Appr	oach		468	2.1	468	2.1	0.508	9.5	LOSA	4.1	29.2	0.76	0.71	0.80	40.3
West	:: Yamb	a Rd (W)													
10	L2	All MCs	162	6.4	162	6.4	0.527	6.0	LOSA	4.2	30.6	0.64	0.56	0.64	44.6
11	T1	All MCs	422	2.8	422	2.8	0.527	6.1	LOSA	4.2	30.6	0.64	0.56	0.64	47.9
12	R2	All MCs	1	0.0	1	0.0	0.527	10.7	LOSA	4.2	30.6	0.64	0.56	0.64	44.0
Appr	oach		585	3.8	585	3.8	0.527	6.1	LOSA	4.2	30.6	0.64	0.56	0.64	47.1
All Ve	ehicles		1631	2.9	1631	2.9	0.527	7.6	LOSA	4.2	30.6	0.65	0.60	0.66	43.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Friday, 5 May 2023 8:31:23 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Treelands Drive Intersection.sip9

▼ Site: 101 [2043 BG AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service	95% B Que [Veh.		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
Caudi	h. Cama	arast Dia	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
		erset Pla	. ,				0.015			0.4		0.00	2.07	0.00	00.4
1		All MCs		0.0		0.0	0.015	8.9	LOSA	0.1	0.7	0.82	0.67	0.82	39.1
2	T1	All MCs	1	0.0	1	0.0	0.015	8.8	LOSA	0.1	0.7	0.82	0.67	0.82	22.3
3		All MCs		0.0		0.0	0.015	13.3	LOSA	0.1	0.7	0.82	0.67	0.82	35.9
Appr	oach		8	0.0	8	0.0	0.015	11.7	LOSA	0.1	0.7	0.82	0.67	0.82	35.1
East	Yamba	a Rd (E)													
4	L2	All MCs	4	0.0	4	0.0	0.614	5.5	LOSA	6.0	43.5	0.67	0.57	0.67	40.6
5	T1	All MCs	497	6.4	497	6.4	0.614	5.9	LOSA	6.0	43.5	0.67	0.57	0.67	46.9
6	R2	All MCs	208	8.0	208	8.0	0.614	10.4	LOSA	6.0	43.5	0.67	0.57	0.67	31.5
6u	U	All MCs	15	0.0	15	0.0	0.614	12.4	LOS A	6.0	43.5	0.67	0.57	0.67	44.4
Appr	oach		724	4.6	724	4.6	0.614	7.3	LOSA	6.0	43.5	0.67	0.57	0.67	42.6
North	n: Treel	ands Dr (N)												
7	L2	All MCs	197	4.0	197	4.0	0.476	8.3	LOSA	3.7	26.9	0.80	0.74	0.85	38.4
8	T1	All MCs	2	0.0	2	0.0	0.476	8.3	LOSA	3.7	26.9	0.80	0.74	0.85	31.7
9	R2	All MCs	188	4.0	188	4.0	0.476	13.1	LOSA	3.7	26.9	0.80	0.74	0.85	40.6
9u	U	All MCs	5	0.0	5	0.0	0.476	15.0	LOS B	3.7	26.9	0.80	0.74	0.85	22.6
Appr	oach		393	3.9	393	3.9	0.476	10.7	LOSA	3.7	26.9	0.80	0.74	0.85	39.3
West	t: Yamb	a Rd (W)													
10	L2	All MCs	143	6.1	143	6.1	0.578	5.9	LOSA	5.1	37.4	0.66	0.56	0.66	44.4
11	T1	All MCs	507	6.0	507	6.0	0.578	6.1	LOSA	5.1	37.4	0.66	0.56	0.66	47.3
12	R2	All MCs	2	0.0	2	0.0	0.578	10.5	LOSA	5.1	37.4	0.66	0.56	0.66	43.8
Appr	oach		653	6.0	653	6.0	0.578	6.0	LOSA	5.1	37.4	0.66	0.56	0.66	46.8
All Ve	ehicles		1778	5.0	1778	5.0	0.614	7.6	LOSA	6.0	43.5	0.70	0.60	0.71	43.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

▼ Site: 101 [2043 BG PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None) Roundabout

Vehicle Movement Performance Turn Mov Arrival 95% Back Of Deg. Level of Prop. Class Flows Flows Satn Delay Service Queue Que No. of [Total HV] [Total HV] Rate [Veh. Dist] Cycles South: Somerset Place (S) 1 L2 All MCs 2 0.0 2 0.0 0.013 LOS A 0.77 0.64 0.77 40.6 7.8 0.1 0.6 2 T1 All MCs 2 0.0 2 0.0 0.013 7.8 LOS A 0.1 0.6 0.77 0.64 0.77 23.2 3 R2 All MCs 4 0.0 4 0.0 0.013 12.3 LOS A 0.1 0.6 0.77 0.64 0.77 37.4 Approach 8 0.0 8 0.0 0.013 10.0 LOS A 0.1 0.6 0.77 0.64 0.77 34.8 East: Yamba Rd (E) 0.543 0.63 0.58 0.63 L2 All MCs 3 0.0 3 0.0 5.4 LOS A 4.9 34.7 40.5 5 T1 All MCs 364 3.8 364 3.8 0.543 5.7 LOS A 4.9 34.7 0.63 0.58 0.63 46.8 6 R2 All MCs 10.3 LOS A 34.7 0.63 0.58 0.63 31.5 254 1.1 254 1.1 0.543 4.9 All MCs 14 0.0 14 0.0 0.543 12.3 LOS A 4.9 34.7 0.63 0.58 0.63 44.3 635 2.6 635 2.6 LOS A 0.58 0.63 Approach 0.543 7.7 4.9 34.7 0.63 40.9 North: Treelands Dr (N) 7 L2 All MCs 297 1.5 297 1.5 0.586 9.2 LOS A 5.6 39.9 0.85 0.79 0.99 38.0 2 0.0 8 T1 All MCs 2 0.0 0.586 9.4 LOS A 5.6 39.9 0.85 0.79 0.99 30.8 9 0.586 14.2 LOS A 39.9 0.85 0.79 0.99 40.0 R2 All MCs 194 3.2 194 3.2 5.6 9u U All MCs 12 0.0 12 0.0 0.586 16.1 LOS B 5.6 39.9 0.85 0.79 0.99 22.0 Approach 0.586 LOS A 0.85 0.99 504 2.1 504 2.1 11.3 5.6 39.9 0.79 38.5 West: Yamba Rd (W) L2 All MCs 176 6.4 0.604 6.7 LOS A 5.6 40.6 0.72 0.61 0.75 44.1 10 176 6.4 11 T1 All MCs 480 2.8 480 2.8 0.604 6.8 LOS A 5.6 40.6 0.72 0.61 0.75 47.5 12 R2 0.604 LOSA 40.6 0.72 0.61 0.75 43.4 All MCs 1 0.0 1 0.0 11.3 5.6 Approach 657 3.8 657 3.8 0.604 6.8 LOS A 5.6 40.6 0.72 0.61 0.75 46.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

8.4

LOSA

5.6

40.6

0.73

0.65

0.78

42.4

Vehicle movement LOS values are based on average delay per movement.

1804 2.9 1804 2.9

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

All Vehicles

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

0.604

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 101 [2033 BG AM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service		ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
0 41	0		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
		erset Pla	. ,		_										
1		All MCs		0.0	2	0.0	0.015	8.7	LOSA	0.1	0.7	0.82	0.67	0.82	39.3
2	T1	All MCs	1	0.0	1	0.0	0.015	8.7	LOSA	0.1	0.7	0.82	0.67	0.82	22.4
3	R2	All MCs	5	0.0	5	0.0	0.015	13.2	LOSA	0.1	0.7	0.82	0.67	0.82	36.0
Appro	oach		8	0.0	8	0.0	0.015	11.5	LOSA	0.1	0.7	0.82	0.67	0.82	35.3
East:	Yamba	a Rd (E)													
4	L2	All MCs	4	0.0	4	0.0	0.605	5.5	LOSA	5.8	42.1	0.67	0.57	0.67	40.6
5	T1	All MCs	478	6.4	478	6.4	0.605	5.9	LOSA	5.8	42.1	0.67	0.57	0.67	46.9
6	R2	All MCs	213	8.0	213	8.0	0.605	10.4	LOSA	5.8	42.1	0.67	0.57	0.67	31.5
6u	U	All MCs	16	0.0	16	0.0	0.605	12.4	LOSA	5.8	42.1	0.67	0.57	0.67	44.4
Appro	oach		711	4.5	711	4.5	0.605	7.4	LOSA	5.8	42.1	0.67	0.57	0.67	42.4
North	: Treel	ands Dr (N)												
7	L2	All MCs	202	4.0	202	4.0	0.478	8.1	LOSA	3.7	26.9	0.79	0.74	0.84	38.6
8	T1	All MCs	2	0.0	2	0.0	0.478	8.1	LOSA	3.7	26.9	0.79	0.74	0.84	31.9
9	R2	All MCs	193	4.0	193	4.0	0.478	12.9	LOSA	3.7	26.9	0.79	0.74	0.84	40.8
9u	U	All MCs	5	0.0	5	0.0	0.478	14.8	LOS B	3.7	26.9	0.79	0.74	0.84	22.7
Appro	oach		402	3.9	402	3.9	0.478	10.5	LOSA	3.7	26.9	0.79	0.74	0.84	39.5
West	: Yamb	a Rd (W)													
10	L2	All MCs	146	6.1	146	6.1	0.566	5.9	LOSA	4.9	36.0	0.66	0.56	0.66	44.5
11	T1	All MCs	486	6.0	486	6.0	0.566	6.1	LOSA	4.9	36.0	0.66	0.56	0.66	47.3
12	R2	All MCs	2	0.0	2	0.0	0.566	10.5	LOSA	4.9	36.0	0.66	0.56	0.66	43.8
Appro	oach		635	6.0	635	6.0	0.566	6.1	LOSA	4.9	36.0	0.66	0.56	0.66	46.8
All Ve	hicles		1756	4.9	1756	4.9	0.605	7.6	LOSA	5.8	42.1	0.70	0.60	0.71	43.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 101 [2033 BG PM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Som	erset Plac													
1	L2	All MCs	2	0.0	2	0.0	0.013	7.8	LOSA	0.1	0.6	0.77	0.64	0.77	40.7
2	T1	All MCs	2	0.0	2	0.0	0.013	7.7	LOSA	0.1	0.6	0.77	0.64	0.77	23.2
3	R2	All MCs	4	0.0	4	0.0	0.013	12.2	LOSA	0.1	0.6	0.77	0.64	0.77	37.4
Appro	oach		8	0.0	8	0.0	0.013	10.0	LOSA	0.1	0.6	0.77	0.64	0.77	34.9
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.538	5.4	LOSA	4.8	34.1	0.64	0.58	0.64	40.5
5	T1	All MCs	349	3.8	349	3.8	0.538	5.8	LOSA	4.8	34.1	0.64	0.58	0.64	46.8
6	R2	All MCs	259	1.1	259	1.1	0.538	10.3	LOSA	4.8	34.1	0.64	0.58	0.64	31.5
6u	U	All MCs	14	0.0	14	0.0	0.538	12.4	LOSA	4.8	34.1	0.64	0.58	0.64	44.3
Appro	oach		625	2.6	625	2.6	0.538	7.8	LOSA	4.8	34.1	0.64	0.58	0.64	40.6
North	: Treel	ands Dr (N)												
7	L2	All MCs	303	1.5	303	1.5	0.589	9.1	LOSA	5.6	40.2	0.85	0.78	0.98	38.2
8	T1	All MCs	2	0.0	2	0.0	0.589	9.2	LOSA	5.6	40.2	0.85	0.78	0.98	31.0
9	R2	All MCs	199	3.2	199	3.2	0.589	14.0	LOSA	5.6	40.2	0.85	0.78	0.98	40.2
9u	U	All MCs	12	0.0	12	0.0	0.589	15.9	LOS B	5.6	40.2	0.85	0.78	0.98	22.1
Appro	oach		516	2.1	516	2.1	0.589	11.1	LOSA	5.6	40.2	0.85	0.78	0.98	38.7
West:	: Yamb	a Rd (W)													
10	L2	All MCs	180	6.4	180	6.4	0.596	6.7	LOSA	5.4	39.4	0.72	0.61	0.75	44.1
11	T1	All MCs	462	2.8	462	2.8	0.596	6.8	LOSA	5.4	39.4	0.72	0.61	0.75	47.5
12	R2	All MCs	1	0.0	1	0.0	0.596	11.3	LOSA	5.4	39.4	0.72	0.61	0.75	43.5
Appro	oach		643	3.8	643	3.8	0.596	6.8	LOSA	5.4	39.4	0.72	0.61	0.75	46.7
All Ve	hicles		1793	2.9	1793	2.9	0.596	8.4	LOSA	5.6	40.2	0.73	0.65	0.77	42.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 101 [2043 BG AM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service		Back Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
0 41	0		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
		erset Pla	. ,		_										
1		All MCs		0.0	3	0.0	0.022	10.3	LOSA	0.1	1.0	0.88	0.71	0.88	38.0
2	T1	All MCs	1	0.0	1	0.0	0.022	10.2	LOSA	0.1	1.0	0.88	0.71	0.88	21.6
3	R2	All MCs	6	0.0	6	0.0	0.022	14.7	LOS B	0.1	1.0	0.88	0.71	0.88	34.7
Appro	oach		11	0.0	11	0.0	0.022	12.9	LOSA	0.1	1.0	0.88	0.71	0.88	34.5
East:	Yamba	a Rd (E)													
4	L2	All MCs	5	0.0	5	0.0	0.691	6.4	LOSA	8.0	58.3	0.78	0.62	0.81	39.9
5	T1	All MCs	543	6.4	543	6.4	0.691	6.8	LOSA	8.0	58.3	0.78	0.62	0.81	46.2
6	R2	All MCs	227	0.8	227	8.0	0.691	11.3	LOSA	8.0	58.3	0.78	0.62	0.81	31.1
6u	U	All MCs	17	0.0	17	0.0	0.691	13.3	LOSA	8.0	58.3	0.78	0.62	0.81	43.8
Appro	oach		793	4.6	793	4.6	0.691	8.2	LOSA	8.0	58.3	0.78	0.62	0.81	42.0
North	ı: Treel	ands Dr (N)												
7	L2	All MCs	218	4.0	218	4.0	0.571	10.4	LOSA	5.3	38.7	0.89	0.83	1.06	36.2
8	T1	All MCs	3	0.0	3	0.0	0.571	10.5	LOSA	5.3	38.7	0.89	0.83	1.06	29.3
9	R2	All MCs	208	4.0	208	4.0	0.571	15.3	LOS B	5.3	38.7	0.89	0.83	1.06	38.6
9u	U	All MCs	5	0.0	5	0.0	0.571	17.2	LOS B	5.3	38.7	0.89	0.83	1.06	21.3
Appro	oach		435	3.9	435	3.9	0.571	12.8	LOSA	5.3	38.7	0.89	0.83	1.06	37.2
West	: Yamb	a Rd (W)													
10	L2	All MCs	159	6.1	159	6.1	0.657	6.8	LOSA	7.0	51.4	0.76	0.62	0.81	43.8
11	T1	All MCs	560	6.0	560	6.0	0.657	7.1	LOSA	7.0	51.4	0.76	0.62	0.81	46.7
12	R2	All MCs	3	0.0	3	0.0	0.657	11.5	LOSA	7.0	51.4	0.76	0.62	0.81	43.1
Appro	oach		722	6.0	722	6.0	0.657	7.0	LOSA	7.0	51.4	0.76	0.62	0.81	46.2
All Ve	ehicles		1960	4.9	1960	4.9	0.691	8.8	LOSA	8.0	58.3	0.80	0.67	0.87	42.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Friday, 5 May 2023 8:31:27 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Treelands Drive Intersection.sip9

▼ Site: 101 [2043 BG PM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows		rival ows HV]	Deg. Satn	Aver. Delay			ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m Î			<u> </u>	km/h
Sout	h: Som	erset Plac	ce (S)												
1	L2	All MCs	3	0.0	3	0.0	0.019	8.9	LOSA	0.1	0.9	0.83	0.68	0.83	39.9
2	T1	All MCs	3	0.0	3	0.0	0.019	8.9	LOSA	0.1	0.9	0.83	0.68	0.83	22.6
3	R2	All MCs	4	0.0	4	0.0	0.019	13.4	LOSA	0.1	0.9	0.83	0.68	0.83	36.7
Appr	oach		11	0.0	11	0.0	0.019	10.7	LOSA	0.1	0.9	0.83	0.68	0.83	33.7
East	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.615	5.8	LOSA	6.0	42.9	0.73	0.60	0.73	40.0
5	T1	All MCs	401	3.8	401	3.8	0.615	6.1	LOSA	6.0	42.9	0.73	0.60	0.73	46.4
6	R2	All MCs	279	1.1	279	1.1	0.615	10.6	LOSA	6.0	42.9	0.73	0.60	0.73	31.2
6u	U	All MCs	15	0.0	15	0.0	0.615	12.7	LOSA	6.0	42.9	0.73	0.60	0.73	43.9
Appr	oach		698	2.6	698	2.6	0.615	8.0	LOSA	6.0	42.9	0.73	0.60	0.73	40.5
North	n: Treel	ands Dr (N)												
7	L2	All MCs	324	1.5	324	1.5	0.689	12.0	LOSA	8.1	57.6	0.95	0.89	1.24	35.3
8	T1	All MCs	3	0.0	3	0.0	0.689	12.2	LOSA	8.1	57.6	0.95	0.89	1.24	27.9
9	R2	All MCs	216	3.2	216	3.2	0.689	17.0	LOS B	8.1	57.6	0.95	0.89	1.24	37.5
9u	U	All MCs	13	0.0	13	0.0	0.689	18.9	LOS B	8.1	57.6	0.95	0.89	1.24	20.5
Appr	oach		556	2.1	556	2.1	0.689	14.1	LOSA	8.1	57.6	0.95	0.89	1.24	35.8
West	: Yamb	a Rd (W)													
10	L2	All MCs	195	6.4	195	6.4	0.687	8.3	LOSA	8.0	57.6	0.82	0.70	0.93	43.2
11	T1	All MCs	527	2.8	527	2.8	0.687	8.4	LOSA	8.0	57.6	0.82	0.70	0.93	46.7
12	R2	All MCs	1	0.0	1	0.0	0.687	12.9	LOSA	8.0	57.6	0.82	0.70	0.93	42.6
Appr	oach		723	3.8	723	3.8	0.687	8.3	LOSA	8.0	57.6	0.82	0.70	0.93	45.9
All Ve	ehicles		1987	2.9	1987	2.9	0.689	9.9	LOSA	8.1	57.6	0.82	0.72	0.95	41.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2033 DES AM - Carrs Access Only (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service	95% B Que [Veh.	eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
South	n: Som	erset Plac	veh/h	%	veh/h	%	v/c	sec		veh	m	_	_		km/h
1		All MCs	()	0.0	2	0.0	0.016	9.8	LOSA	0.1	0.8	0.86	0.69	0.86	38.3
2	T1	All MCs		0.0	1		0.016	9.7	LOSA	0.1	0.8	0.86	0.69	0.86	21.8
3	R2	All MCs		0.0	5	0.0	0.016	14.2	LOSA	0.1	0.8	0.86	0.69	0.86	35.1
Appro		7		0.0	8		0.016	12.6	LOSA	0.1	0.8	0.86	0.69	0.86	34.3
East:	Yamba	a Rd (E)													
4	L2	All MCs	5	0.0	5	0.0	0.663	5.5	LOSA	7.0	51.1	0.70	0.57	0.70	40.4
5	T1	All MCs	540	6.4	540	6.4	0.663	5.9	LOSA	7.0	51.1	0.70	0.57	0.70	46.7
6	R2	All MCs	244	8.0	244	8.0	0.663	10.4	LOSA	7.0	51.1	0.70	0.57	0.70	31.4
6u	U	All MCs	14	0.0	14	0.0	0.663	12.4	LOSA	7.0	51.1	0.70	0.57	0.70	44.3
Appro	oach		803	4.5	803	4.5	0.663	7.4	LOSA	7.0	51.1	0.70	0.57	0.70	42.2
North	: Treel	ands Dr (N)												
7	L2	All MCs	203	4.0	203	4.0	0.458	7.8	LOSA	3.4	24.9	0.79	0.72	0.81	39.0
8	T1	All MCs	2	0.0	2	0.0	0.458	7.9	LOSA	3.4	24.9	0.79	0.72	0.81	32.4
9	R2	All MCs	174	4.0	174	4.0	0.458	12.6	LOSA	3.4	24.9	0.79	0.72	0.81	41.2
9u	U	All MCs	4	0.0	4	0.0	0.458	14.6	LOS B	3.4	24.9	0.79	0.72	0.81	22.9
Appro	oach		383	3.9	383	3.9	0.458	10.1	LOSA	3.4	24.9	0.79	0.72	0.81	39.9
West	: Yamb	a Rd (W)													
10	L2	All MCs	133	6.1	133	6.1	0.574	6.1	LOSA	5.0	36.4	0.70	0.58	0.70	44.2
11	T1	All MCs	486	6.0	486	6.0	0.574	6.3	LOSA	5.0	36.4	0.70	0.58	0.70	47.1
12	R2	All MCs	2	0.0	2	0.0	0.574	10.8	LOSA	5.0	36.4	0.70	0.58	0.70	43.5
Appro	oach		621	6.0	621	6.0	0.574	6.3	LOSA	5.0	36.4	0.70	0.58	0.70	46.6
All Ve	hicles		1816	4.9	1816	4.9	0.663	7.6	LOSA	7.0	51.1	0.72	0.60	0.72	43.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2033 DES PM - Carrs Access Only (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay	Level of Service	Qι [Veh.	Back Of leue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
South	n: Som	erset Pla		70	ven/n	70	V/C	sec	_	veh	m			_	km/h
1		All MCs	` '	0.0	2	0.0	0.015	7.9	LOSA	0.1	0.6	0.77	0.66	0.77	40.4
2		All MCs		0.0		0.0	0.015	7.8	LOSA	0.1	0.6	0.77	0.66	0.77	23.2
3		All MCs		0.0		0.0	0.015	12.3	LOSA	0.1	0.6	0.77	0.66	0.77	37.2
Appro				0.0	9		0.015	10.3	LOSA	0.1	0.6	0.77	0.66	0.77	34.9
East:	Yamba	a Rd (E)													
4		All MCs	3	0.0	3	0.0	0.577	5.2	LOSA	5.1	36.5	0.59	0.57	0.59	40.7
5	T1	All MCs	398	3.8	398	3.8	0.577	5.5	LOSA	5.1	36.5	0.59	0.57	0.59	47.0
6	R2	All MCs	300	1.1	300	1.1	0.577	10.0	LOSA	5.1	36.5	0.59	0.57	0.59	31.6
6u	U	All MCs	13	0.0	13	0.0	0.577	12.1	LOSA	5.1	36.5	0.59	0.57	0.59	44.5
Appro	oach		714	2.6	714	2.6	0.577	7.5	LOSA	5.1	36.5	0.59	0.57	0.59	40.7
North	: Treel	ands Dr (N)												
7	L2	All MCs	340	1.5	340	1.5	0.599	9.0	LOSA	5.6	40.2	0.84	0.80	0.99	38.5
8	T1	All MCs	2	0.0	2	0.0	0.599	9.2	LOSA	5.6	40.2	0.84	0.80	0.99	31.3
9	R2	All MCs	179	3.2	179	3.2	0.599	13.9	LOSA	5.6	40.2	0.84	0.80	0.99	40.0
9u	U	All MCs	11	0.0	11	0.0	0.599	15.9	LOS B	5.6	40.2	0.84	0.80	0.99	22.3
Appro	oach		532	2.0	532	2.0	0.599	10.8	LOSA	5.6	40.2	0.84	0.80	0.99	38.7
West	: Yamb	a Rd (W)													
10	L2	All MCs	162	6.4	162	6.4	0.620	7.0	LOSA	5.7	41.1	0.72	0.64	0.78	44.0
11	T1	All MCs	512	2.7	512	2.7	0.620	7.1	LOSA	5.7	41.1	0.72	0.64	0.78	47.4
12	R2	All MCs	1	0.0	1	0.0	0.620	11.7	LOSA	5.7	41.1	0.72	0.64	0.78	43.4
Appro	oach		675	3.6	675	3.6	0.620	7.1	LOSA	5.7	41.1	0.72	0.64	0.78	46.7
All Ve	ehicles		1929	2.8	1929	2.8	0.620	8.3	LOSA	5.7	41.1	0.71	0.66	0.77	42.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 101 [2033 DES AM Seasonality - Carrs Access Only (Site)

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None)

Roundabout

Vehi		ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	FI			rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Som	erset Pla		70	ven/n	70	V/C	sec	_	ven	m			_	KIII/II
1		All MCs	• • •	0.0	2	0.0	0.022	11.3	LOSA	0.2	1.1	0.91	0.73	0.91	37.0
2	T1			0.0		0.0	0.022	11.2	LOSA	0.2	1.1	0.91	0.73	0.91	21.0
3	R2	All MCs		0.0		0.0	0.022	15.7	LOS B	0.2	1.1	0.91	0.73	0.91	33.7
Appr				0.0		0.0	0.022	14.2	LOSA	0.2	1.1	0.91	0.73	0.91	33.1
East:	Yamba	a Rd (E)													
4		All MCs	5	0.0	5	0.0	0.731	6.5	LOSA	9.4	68.0	0.81	0.62	0.84	39.7
5	T1	All MCs	581	6.4	581	6.4	0.731	7.0	LOSA	9.4	68.0	0.81	0.62	0.84	46.1
6	R2	All MCs	261	0.8	261	0.8	0.731	11.4	LOSA	9.4	68.0	0.81	0.62	0.84	31.0
6u	U	All MCs	16	0.0	16	0.0	0.731	13.5	LOSA	9.4	68.0	0.81	0.62	0.84	43.6
Appr	oach		863	4.6	863	4.6	0.731	8.4	LOSA	9.4	68.0	0.81	0.62	0.84	41.6
North	n: Treel	ands Dr (N)												
7	L2	All MCs	222	4.0	222	4.0	0.538	9.4	LOSA	4.8	34.4	0.86	0.79	0.98	37.3
8	T1	All MCs	2	0.0	2	0.0	0.538	9.5	LOSA	4.8	34.4	0.86	0.79	0.98	30.4
9	R2	All MCs	193	4.0	193	4.0	0.538	14.3	LOSA	4.8	34.4	0.86	0.79	0.98	39.6
9u	U	All MCs	5	0.0	5	0.0	0.538	16.2	LOS B	4.8	34.4	0.86	0.79	0.98	21.9
Appr	oach		422	3.9	422	3.9	0.538	11.7	LOSA	4.8	34.4	0.86	0.79	0.98	38.2
West	: Yamb	a Rd (W)													
10	L2	All MCs	146	6.1	146	6.1	0.645	7.3	LOSA	6.8	49.9	0.78	0.65	0.84	43.6
11	T1	All MCs	532	6.0	532	6.0	0.645	7.5	LOSA	6.8	49.9	0.78	0.65	0.84	46.6
12	R2	All MCs	2	0.0	2	0.0	0.645	11.9	LOSA	6.8	49.9	0.78	0.65	0.84	43.0
Appr	oach		680	6.0	680	6.0	0.645	7.4	LOSA	6.8	49.9	0.78	0.65	0.84	46.1
All Ve	ehicles		1975	4.9	1975	4.9	0.731	8.8	LOSA	9.4	68.0	0.81	0.67	0.87	42.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: 101 [2033 DES PM Seasonality - Carrs Access Only (Site)

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	h: Som	erset Pla		70	VO11//11	70	V/ O			٧٥١١					KITI/TI
1	L2	All MCs	2	0.0	2	0.0	0.017	8.9	LOSA	0.1	0.8	0.83	0.68	0.83	39.4
2	T1	All MCs	2	0.0	2	0.0	0.017	8.8	LOSA	0.1	0.8	0.83	0.68	0.83	22.6
3	R2	All MCs	5	0.0	5	0.0	0.017	13.3	LOSA	0.1	0.8	0.83	0.68	0.83	36.2
Appr	oach		9	0.0	9	0.0	0.017	11.3	LOSA	0.1	8.0	0.83	0.68	0.83	34.1
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.639	5.4	LOSA	6.2	44.0	0.68	0.59	0.68	40.2
5	T1	All MCs	431	3.8	431	3.8	0.639	5.8	LOSA	6.2	44.0	0.68	0.59	0.68	46.6
6	R2	All MCs	323	1.1	323	1.1	0.639	10.3	LOSA	6.2	44.0	0.68	0.59	0.68	31.3
6u	U	All MCs	14	0.0	14	0.0	0.639	12.4	LOSA	6.2	44.0	0.68	0.59	0.68	44.1
Appr	oach		771	2.6	771	2.6	0.639	7.8	LOSA	6.2	44.0	0.68	0.59	0.68	40.3
North	n: Treel	ands Dr (N)												
7	L2	All MCs	366	1.5	366	1.5	0.692	11.3	LOSA	7.8	55.7	0.93	0.89	1.21	36.2
8	T1	All MCs	2	0.0	2	0.0	0.692	11.5	LOSA	7.8	55.7	0.93	0.89	1.21	28.8
9	R2	All MCs	199	3.2	199	3.2	0.692	16.2	LOS B	7.8	55.7	0.93	0.89	1.21	37.9
9u	U	All MCs	12	0.0	12	0.0	0.692	18.2	LOS B	7.8	55.7	0.93	0.89	1.21	21.0
Appr	oach		579	2.0	579	2.0	0.692	13.1	LOSA	7.8	55.7	0.93	0.89	1.21	36.5
West	:: Yamb	a Rd (W)													
10	L2	All MCs	180	6.4	180	6.4	0.692	8.3	LOSA	7.7	55.3	0.81	0.72	0.94	43.2
11	T1	All MCs	552	2.7	552	2.7	0.692	8.4	LOSA	7.7	55.3	0.81	0.72	0.94	46.7
12	R2	All MCs	1	0.0	1	0.0	0.692	12.9	LOSA	7.7	55.3	0.81	0.72	0.94	42.6
Appr	oach		733	3.6	733	3.6	0.692	8.4	LOSA	7.7	55.3	0.81	0.72	0.94	46.0
All Ve	ehicles		2092	2.8	2092	2.8	0.692	9.5	LOSA	7.8	55.7	0.80	0.72	0.92	41.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Friday, 5 May 2023 8:31:30 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Treelands Drive Intersection.sip9

♥ Site: 101 [2033 DES AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive

Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Som	erset Plac	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.017	10.0	LOSA	0.1	8.0	0.87	0.70	0.87	38.1
2	T1	All MCs	1	0.0	1	0.0	0.017	10.0	LOSA	0.1	8.0	0.87	0.70	0.87	21.7
3	R2	All MCs	5	0.0	5	0.0	0.017	14.5	LOSA	0.1	8.0	0.87	0.70	0.87	34.9
Appro	oach		8	0.0	8	0.0	0.017	12.8	LOSA	0.1	8.0	0.87	0.70	0.87	34.1
East:	Yamba	a Rd (E)													
4	L2	All MCs	5	0.0	5	0.0	0.675	5.5	LOSA	7.3	53.0	0.71	0.57	0.71	40.4
5	T1	All MCs	551	6.4	551	6.4	0.675	5.9	LOSA	7.3	53.0	0.71	0.57	0.71	46.7
6	R2	All MCs	248	0.8	248	8.0	0.675	10.4	LOSA	7.3	53.0	0.71	0.57	0.71	31.4
6u	U	All MCs	14	0.0	14	0.0	0.675	12.5	LOSA	7.3	53.0	0.71	0.57	0.71	44.2
Appro	oach		818	4.6	818	4.6	0.675	7.4	LOSA	7.3	53.0	0.71	0.57	0.71	42.2
North	: Treel	ands Dr (N)												
7	L2	All MCs	203	4.0	203	4.0	0.458	7.8	LOSA	3.4	24.9	0.79	0.72	0.81	39.0
8	T1	All MCs	2	0.0	2	0.0	0.458	7.9	LOSA	3.4	24.9	0.79	0.72	0.81	32.4
9	R2	All MCs	174	4.0	174	4.0	0.458	12.6	LOSA	3.4	24.9	0.79	0.72	0.81	41.2
9u	U	All MCs	4	0.0	4	0.0	0.458	14.6	LOS B	3.4	24.9	0.79	0.72	0.81	22.9
Appro	oach		383	3.9	383	3.9	0.458	10.0	LOSA	3.4	24.9	0.79	0.72	0.81	39.9
West	: Yamb	a Rd (W)													
10	L2	All MCs	133	6.1	133	6.1	0.576	6.2	LOSA	5.0	37.0	0.70	0.58	0.71	44.2
11	T1	All MCs	485	6.0	485	6.0	0.576	6.4	LOSA	5.0	37.0	0.70	0.58	0.71	47.1
12	R2	All MCs	2	0.0	2	0.0	0.576	10.9	LOSA	5.0	37.0	0.70	0.58	0.71	43.5
Appro	oach		620	6.0	620	6.0	0.576	6.4	LOSA	5.0	37.0	0.70	0.58	0.71	46.5
All Ve	hicles		1829	4.9	1829	4.9	0.675	7.6	LOSA	7.3	53.0	0.72	0.61	0.73	43.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2033 DES PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows		rival ows HV 1	Deg. Satn	Aver. Delay	Level of Service		ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m ¹			- /	km/h
Sout	h: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.013	7.2	LOSA	0.1	0.6	0.73	0.64	0.73	41.1
2	T1	All MCs	2	0.0	2	0.0	0.013	7.1	LOSA	0.1	0.6	0.73	0.64	0.73	23.6
3	R2	All MCs	5	0.0	5	0.0	0.013	11.6	LOSA	0.1	0.6	0.73	0.64	0.73	37.9
Appr			9	0.0	9	0.0	0.013	9.6	LOSA	0.1	0.6	0.73	0.64	0.73	35.6
East:		a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.527	5.1	LOSA	4.4	31.5	0.57	0.57	0.57	40.8
5	T1	All MCs	361	3.8	361	3.8	0.527	5.4	LOSA	4.4	31.5	0.57	0.57	0.57	47.1
6	R2	All MCs	271	1.1	271	1.1	0.527	10.0	LOSA	4.4	31.5	0.57	0.57	0.57	31.7
6u	U	All MCs	13	0.0	13	0.0	0.527	12.0	LOSA	4.4	31.5	0.57	0.57	0.57	44.6
Appr			647	2.6	647	2.6	0.527	7.4	LOSA	4.4	31.5	0.57	0.57	0.57	40.8
		ands Dr (,												
7	L2	All MCs	365	1.5	365	1.5	0.649	10.3	LOSA	6.7	47.9	0.89	0.85	1.11	37.2
8	T1	All MCs	2	0.0	2	0.0	0.649	10.5	LOSA	6.7	47.9	0.89	0.85	1.11	29.8
9	R2	All MCs	179	3.2	179	3.2	0.649	15.3	LOS B	6.7	47.9	0.89	0.85	1.11	38.8
9u	U	All MCs	11	0.0	11	0.0	0.649	17.3	LOS B	6.7	47.9	0.89	0.85	1.11	21.5
Appr	oach		557	2.0	557	2.0	0.649	12.1	LOSA	6.7	47.9	0.89	0.85	1.11	37.4
West	: Yamb	a Rd (W)													
10	L2	All MCs	162	6.4	162	6.4	0.632	6.8	LOSA	5.9	42.5	0.70	0.63	0.75	44.1
11	T1	All MCs	548	2.7	548	2.7	0.632	6.9	LOSA	5.9	42.5	0.70	0.63	0.75	47.5
12	R2	All MCs	1	0.0	1	0.0	0.632	11.4	LOSA	5.9	42.5	0.70	0.63	0.75	43.5
Appr	oach		712	3.5	712	3.5	0.632	6.9	LOSA	5.9	42.5	0.70	0.63	0.75	46.8
All Ve	ehicles		1925	2.8	1925	2.8	0.649	8.6	LOSA	6.7	47.9	0.71	0.67	0.79	42.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2033 DES AM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	icle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service	Qu [Veh.	Back Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
Caudi	h. Cama	arast Dia	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
		erset Pla	. ,												
1		All MCs		0.0		0.0	0.022	11.6	LOSA	0.2	1.1	0.92	0.73	0.92	36.7
2	T1	All MCs	1	0.0	1	0.0	0.022	11.5	LOSA	0.2	1.1	0.92	0.73	0.92	20.9
3		All MCs	6	0.0	6	0.0	0.022	16.0	LOS B	0.2	1.1	0.92	0.73	0.92	33.5
Appr	oach		9	0.0	9	0.0	0.022	14.5	LOS B	0.2	1.1	0.92	0.73	0.92	32.9
East	Yamba	a Rd (E)													
4	L2	All MCs	5	0.0	5	0.0	0.743	6.7	LOSA	9.8	71.6	0.82	0.63	0.87	39.5
5	T1	All MCs	591	6.4	591	6.4	0.743	7.1	LOSA	9.8	71.6	0.82	0.63	0.87	46.0
6	R2	All MCs	266	0.8	266	8.0	0.743	11.6	LOSA	9.8	71.6	0.82	0.63	0.87	30.9
6u	U	All MCs	16	0.0	16	0.0	0.743	13.6	LOSA	9.8	71.6	0.82	0.63	0.87	43.5
Appr	oach		878	4.5	878	4.5	0.743	8.6	LOSA	9.8	71.6	0.82	0.63	0.87	41.5
North	n: Treel	ands Dr (N)												
7	L2	All MCs	222	4.0	222	4.0	0.538	9.4	LOSA	4.8	34.5	0.86	0.79	0.98	37.3
8	T1	All MCs	2	0.0	2	0.0	0.538	9.5	LOSA	4.8	34.5	0.86	0.79	0.98	30.4
9	R2	All MCs	193	4.0	193	4.0	0.538	14.3	LOSA	4.8	34.5	0.86	0.79	0.98	39.6
9u	U	All MCs	5	0.0	5	0.0	0.538	16.2	LOS B	4.8	34.5	0.86	0.79	0.98	21.9
Appr	oach		422	3.9	422	3.9	0.538	11.7	LOSA	4.8	34.5	0.86	0.79	0.98	38.2
West	t: Yamb	a Rd (W)													
10	L2	All MCs	146	6.1	146	6.1	0.649	7.4	LOSA	6.9	50.7	0.79	0.65	0.86	43.5
11	T1	All MCs	531	6.0	531	6.0	0.649	7.6	LOSA	6.9	50.7	0.79	0.65	0.86	46.5
12	R2	All MCs	2	0.0	2	0.0	0.649	12.0	LOSA	6.9	50.7	0.79	0.65	0.86	42.9
Appr	oach		679	6.0	679	6.0	0.649	7.6	LOSA	6.9	50.7	0.79	0.65	0.86	46.0
All Ve	ehicles		1988	4.9	1988	4.9	0.743	8.9	LOSA	9.8	71.6	0.82	0.67	0.89	42.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Friday, 5 May 2023 8:31:32 AM
Project: P:\P5746 WYURA Subdivision TIA\Technical\Models\P5746.001M Yamba Road & Treelands Drive Intersection.sip9

♥ Site: 101 [2033 DES PM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service		ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
0 "		4 DI	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
		erset Pla	. ,		_										
1		All MCs		0.0		0.0	0.015	8.0	LOSA	0.1	0.7	0.78	0.66	0.78	40.3
2	T1	All MCs	2	0.0	2	0.0	0.015	7.9	LOSA	0.1	0.7	0.78	0.66	0.78	23.1
3	R2	All MCs	5	0.0	5	0.0	0.015	12.5	LOSA	0.1	0.7	0.78	0.66	0.78	37.1
Appr	oach		9	0.0	9	0.0	0.015	10.5	LOSA	0.1	0.7	0.78	0.66	0.78	34.8
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.587	5.3	LOSA	5.3	38.0	0.64	0.59	0.64	40.4
5	T1	All MCs	393	3.8	393	3.8	0.587	5.6	LOSA	5.3	38.0	0.64	0.59	0.64	46.7
6	R2	All MCs	294	1.1	294	1.1	0.587	10.2	LOSA	5.3	38.0	0.64	0.59	0.64	31.5
6u	U	All MCs	14	0.0	14	0.0	0.587	12.3	LOSA	5.3	38.0	0.64	0.59	0.64	44.2
Appr	oach		703	2.6	703	2.6	0.587	7.7	LOSA	5.3	38.0	0.64	0.59	0.64	40.5
North	n: Treel	ands Dr (N)												
7	L2	All MCs	392	1.5	392	1.5	0.746	13.4	LOSA	9.5	67.6	0.98	0.96	1.38	34.2
8	T1	All MCs	2	0.0	2	0.0	0.746	13.6	LOSA	9.5	67.6	0.98	0.96	1.38	26.8
9	R2	All MCs	199	3.2	199	3.2	0.746	18.4	LOS B	9.5	67.6	0.98	0.96	1.38	36.1
9u	U	All MCs	12	0.0	12	0.0	0.746	20.3	LOS B	9.5	67.6	0.98	0.96	1.38	19.9
Appr	oach		604	2.0	604	2.0	0.746	15.2	LOS B	9.5	67.6	0.98	0.96	1.38	34.6
West	: Yamb	a Rd (W)													
10	L2	All MCs	180	6.4	180	6.4	0.702	8.0	LOSA	7.9	56.9	0.79	0.70	0.91	43.4
11	T1	All MCs	588	2.7	588	2.7	0.702	8.1	LOSA	7.9	56.9	0.79	0.70	0.91	46.9
12	R2	All MCs	1	0.0	1	0.0	0.702	12.7	LOSA	7.9	56.9	0.79	0.70	0.91	42.8
Appr	oach		769	3.6	769	3.6	0.702	8.1	LOSA	7.9	56.9	0.79	0.70	0.91	46.2
All Ve	ehicles		2086	2.8	2086	2.8	0.746	10.0	LOSA	9.5	67.6	0.80	0.74	0.95	41.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Som	erset Plac		70	VOI.I//11	,,	,,,			7011					1211/11
1	L2	All MCs	2	0.0	2	0.0	0.023	11.8	LOSA	0.2	1.1	0.93	0.73	0.93	36.6
2	T1	All MCs	1	0.0	1	0.0	0.023	11.7	LOSA	0.2	1.1	0.93	0.73	0.93	20.8
3	R2	All MCs	6	0.0	6	0.0	0.023	16.2	LOS B	0.2	1.1	0.93	0.73	0.93	33.3
Appro	oach		9	0.0	9	0.0	0.023	14.7	LOS B	0.2	1.1	0.93	0.73	0.93	32.7
East:	Yamba	a Rd (E)													
4	L2	All MCs	5	0.0	5	0.0	0.751	6.7	LOSA	10.2	74.0	0.83	0.63	0.87	39.5
5	T1	All MCs	609	6.4	609	6.4	0.751	7.1	LOSA	10.2	74.0	0.83	0.63	0.87	46.0
6	R2	All MCs	262	0.8	262	8.0	0.751	11.6	LOSA	10.2	74.0	0.83	0.63	0.87	30.9
6u	U	All MCs	15	0.0	15	0.0	0.751	13.6	LOSA	10.2	74.0	0.83	0.63	0.87	43.5
Appro	oach		892	4.6	892	4.6	0.751	8.6	LOSA	10.2	74.0	0.83	0.63	0.87	41.6
North	: Treel	ands Dr (N)												
7	L2	All MCs	217	4.0	217	4.0	0.539	9.7	LOSA	4.8	34.7	0.88	0.80	1.00	37.0
8	T1	All MCs	2	0.0	2	0.0	0.539	9.8	LOSA	4.8	34.7	0.88	0.80	1.00	30.1
9	R2	All MCs	188	4.0	188	4.0	0.539	14.5	LOS B	4.8	34.7	0.88	0.80	1.00	39.3
9u	U	All MCs	5	0.0	5	0.0	0.539	16.5	LOS B	4.8	34.7	0.88	0.80	1.00	21.7
Appro	oach		413	3.9	413	3.9	0.539	12.0	LOSA	4.8	34.7	0.88	0.80	1.00	37.9
West	: Yamb	a Rd (W)													
10	L2	All MCs	143	6.1	143	6.1	0.661	7.5	LOSA	7.2	53.3	0.80	0.66	0.87	43.5
11	T1	All MCs	552	6.0	552	6.0	0.661	7.7	LOSA	7.2	53.3	0.80	0.66	0.87	46.5
12	R2	All MCs	2	0.0	2	0.0	0.661	12.1	LOSA	7.2	53.3	0.80	0.66	0.87	42.8
Appro	oach		697	6.0	697	6.0	0.661	7.7	LOSA	7.2	53.3	0.80	0.66	0.87	46.0
All Ve	hicles		2011	4.9	2011	4.9	0.751	9.0	LOSA	10.2	74.0	0.83	0.67	0.90	42.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2043 DES PM (Site Folder: General)]Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows		rival ows HV]	Deg. Satn	Aver. Delay	Level of Service		Back Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m Î				km/h
South	h: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.015	8.1	LOSA	0.1	0.7	0.79	0.66	0.79	40.2
2	T1	All MCs	2	0.0	2	0.0	0.015	8.0	LOSA	0.1	0.7	0.79	0.66	0.79	23.1
3	R2	All MCs	5	0.0	5	0.0	0.015	12.5	LOSA	0.1	0.7	0.79	0.66	0.79	37.0
Appr			9	0.0	9	0.0	0.015	10.5	LOSA	0.1	0.7	0.79	0.66	0.79	34.8
East:		a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.591	5.3	LOSA	5.4	38.7	0.64	0.58	0.64	40.5
5	T1	All MCs	407	3.8	407	3.8	0.591	5.6	LOSA	5.4	38.7	0.64	0.58	0.64	46.8
6	R2	All MCs	288	1.1	288	1.1	0.591	10.2	LOSA	5.4	38.7	0.64	0.58	0.64	31.5
6u	U	All MCs	14	0.0	14	0.0	0.591	12.3	LOSA	5.4	38.7	0.64	0.58	0.64	44.3
Appro			713	2.6	713	2.6	0.591	7.6	LOSA	5.4	38.7	0.64	0.58	0.64	40.8
		ands Dr (,												
7	L2	All MCs	385	1.5	385	1.5	0.746	13.8	LOSA	9.5	67.7	0.99	0.97	1.40	33.9
8	T1	All MCs	2	0.0	2	0.0	0.746	14.0	LOSA	9.5	67.7	0.99	0.97	1.40	26.5
9	R2	All MCs	194	3.2	194	3.2	0.746	18.7	LOS B	9.5	67.7	0.99	0.97	1.40	35.9
9u	U	All MCs	12	0.0	12	0.0	0.746	20.7	LOS B	9.5	67.7	0.99	0.97	1.40	19.7
Appr	oach		593	2.0	593	2.0	0.746	15.6	LOS B	9.5	67.7	0.99	0.97	1.40	34.3
West	: Yamb	a Rd (W)													
10	L2	All MCs	176	6.4	176	6.4	0.710	8.1	LOSA	8.1	58.7	0.80	0.70	0.91	43.3
11	T1	All MCs	606	2.7	606	2.7	0.710	8.2	LOSA	8.1	58.7	0.80	0.70	0.91	46.8
12	R2	All MCs	1	0.0	1	0.0	0.710	12.7	LOSA	8.1	58.7	0.80	0.70	0.91	42.8
Appr	oach		783	3.5	783	3.5	0.710	8.2	LOSA	8.1	58.7	0.80	0.70	0.91	46.2
All Ve	ehicles		2098	2.8	2098	2.8	0.746	10.1	LOSA	9.5	67.7	0.80	0.74	0.96	41.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2043 DES AM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn v/c	Aver. Delay	Level of Service	Que [Veh.	ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
South	veh/h % veh/h % South: Somerset Place (S)							sec		veh	m				km/h
1		All MCs	` ,	0.0	2	0.0	0.032	14.0	LOSA	0.2	1.7	0.99	0.78	0.99	35.0
2		All MCs		0.0	1		0.032	14.0	LOSA	0.2	1.7	0.99	0.78	0.99	19.7
3		All MCs		0.0		0.0	0.032	18.5	LOS B	0.2	1.7	0.99	0.78	0.99	31.8
Appro	oacn		11	0.0	11	0.0	0.032	16.7	LOS B	0.2	1.7	0.99	0.78	0.99	31.6
East:	Yamba	a Rd (E)													
4	L2	All MCs	6	0.0	6	0.0	0.832	9.2	LOSA	15.0	109.5	0.98	0.74	1.14	38.0
5	T1	All MCs	656	6.4	656	6.4	0.832	9.6	LOSA	15.0	109.5	0.98	0.74	1.14	44.6
6	R2	All MCs	281	0.8	281	0.8	0.832	14.1	LOSA	15.0	109.5	0.98	0.74	1.14	29.9
6u	U	All MCs	17	0.0	17	0.0	0.832	16.1	LOS B	15.0	109.5	0.98	0.74	1.14	42.1
Appro	oach		960	4.6	960	4.6	0.832	11.0	LOSA	15.0	109.5	0.98	0.74	1.14	40.4
North	ı: Treel	ands Dr ((N)												
7	L2	All MCs	237	4.0	237	4.0	0.650	12.8	LOSA	7.0	50.7	0.97	0.90	1.26	34.2
8	T1	All MCs	3	0.0	3	0.0	0.650	12.8	LOSA	7.0	50.7	0.97	0.90	1.26	27.1
9	R2	All MCs	208	4.0	208	4.0	0.650	17.6	LOS B	7.0	50.7	0.97	0.90	1.26	36.6
9u	U	All MCs	5	0.0	5	0.0	0.650	19.5	LOS B	7.0	50.7	0.97	0.90	1.26	20.1
Appro	oach		454	3.9	454	3.9	0.650	15.1	LOS B	7.0	50.7	0.97	0.90	1.26	35.2
West	: Yamb	a Rd (W))												
10	L2	All MCs	159	6.1	159	6.1	0.750	9.4	LOSA	10.4	76.8	0.92	0.76	1.09	42.4
11	T1	All MCs	604		604	6.0	0.750	9.7	LOSA	10.4	76.8	0.92	0.76	1.09	45.5
12		All MCs	3	0.0	3	0.0	0.750	14.0	LOSA	10.4	76.8	0.92	0.76	1.09	41.8
Appro			766		766		0.750	9.6	LOSA	10.4	76.8	0.92	0.76	1.09	45.0
All Ve	ehicles		2191	4.9	2191	4.9	0.832	11.4	LOSA	15.0	109.5	0.96	0.78	1.14	41.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: 101 [2043 DES PM Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None)

Roundabout

Vehicle Movement Performance															
Mov ID	Mov Turn Mov ID Class		Demand Flows [Total HV]					Aver. Delay		95% B Que [Veh.	ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m Î			<u> </u>	km/h
Sout	South: Somerset Place (S)														
1	L2	All MCs	3	0.0	3	0.0	0.023	9.3	LOSA	0.2	1.1	0.85	0.70	0.85	39.3
2	T1	All MCs	3	0.0	3	0.0	0.023	9.2	LOSA	0.2	1.1	0.85	0.70	0.85	22.4
3	R2	All MCs	6	0.0	6	0.0	0.023	13.7	LOSA	0.2	1.1	0.85	0.70	0.85	36.0
Appr	oach		13	0.0	13	0.0	0.023	11.5	LOSA	0.2	1.1	0.85	0.70	0.85	33.6
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.661	5.9	LOSA	6.8	48.8	0.73	0.62	0.75	40.0
5	T1	All MCs	445	3.8	445	3.8	0.661	6.2	LOSA	6.8	48.8	0.73	0.62	0.75	46.4
6	R2	All MCs	314	1.1	314	1.1	0.661	10.7	LOSA	6.8	48.8	0.73	0.62	0.75	31.2
6u	U	All MCs	15	0.0	15	0.0	0.661	12.8	LOSA	6.8	48.8	0.73	0.62	0.75	43.9
Appr	oach		777	2.6	777	2.6	0.661	8.2	LOSA	6.8	48.8	0.73	0.62	0.75	40.4
North	n: Treel	ands Dr (N)												
7	L2	All MCs	413	1.5	413	1.5	0.886	24.2	LOS B	16.6	118.5	1.00	1.31	1.97	26.9
8	T1	All MCs	3	0.0	3	0.0	0.886	24.4	LOS B	16.6	118.5	1.00	1.31	1.97	19.8
9	R2	All MCs	216	3.2	216	3.2	0.886	29.2	LOS C	16.6	118.5	1.00	1.31	1.97	29.2
9u	U	All MCs	13	0.0	13	0.0	0.886	31.1	LOS C	16.6	118.5	1.00	1.31	1.97	15.8
Appr	oach		644	2.0	644	2.0	0.886	26.0	LOS B	16.6	118.5	1.00	1.31	1.97	27.5
West	: Yamb	a Rd (W)													
10	L2	All MCs	195	6.4	195	6.4	0.794	10.3	LOSA	11.6	83.7	0.92	0.82	1.16	41.5
11	T1	All MCs	653	2.7	653	2.7	0.794	10.4	LOSA	11.6	83.7	0.92	0.82	1.16	45.2
12	R2	All MCs	1	0.0	1	0.0	0.794	14.9	LOS B	11.6	83.7	0.92	0.82	1.16	41.0
Appr	oach		848	3.5	848	3.5	0.794	10.4	LOSA	11.6	83.7	0.92	0.82	1.16	44.5
All Ve	ehicles		2282	2.8	2282	2.8	0.886	14.0	LOSA	16.6	118.5	0.88	0.89	1.25	37.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

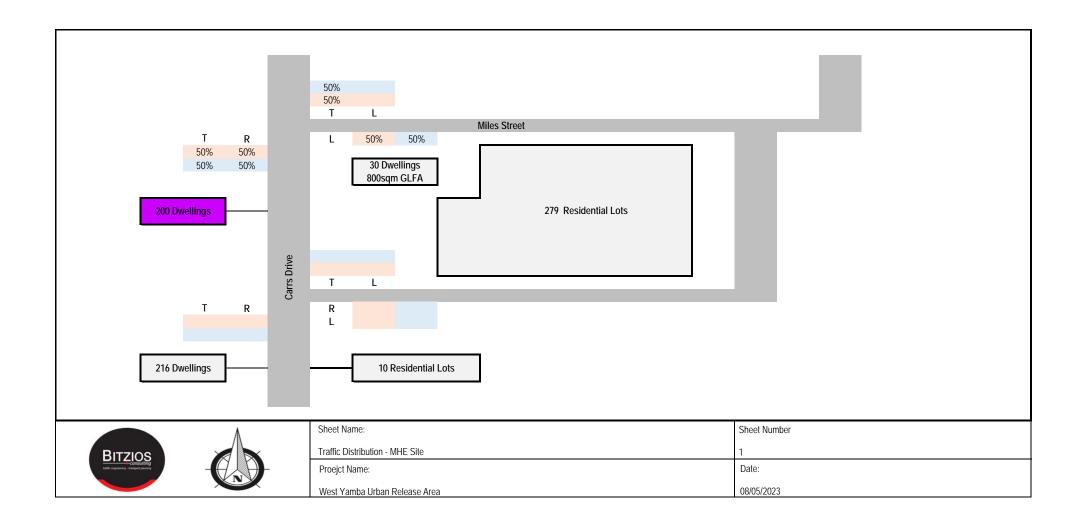
Vehicle movement LOS values are based on average delay per movement.

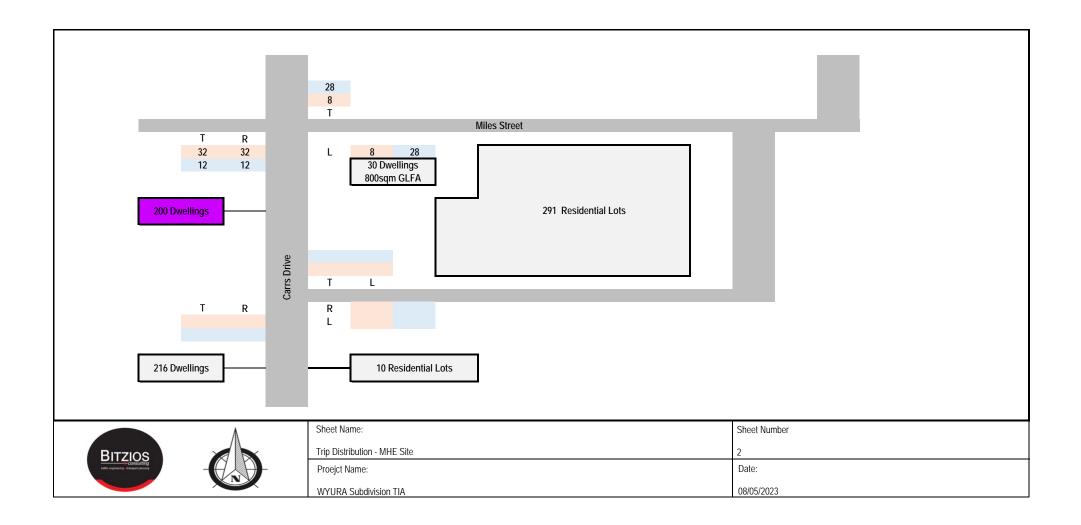
Intersection and Approach LOS values are based on average delay for all vehicle movements.

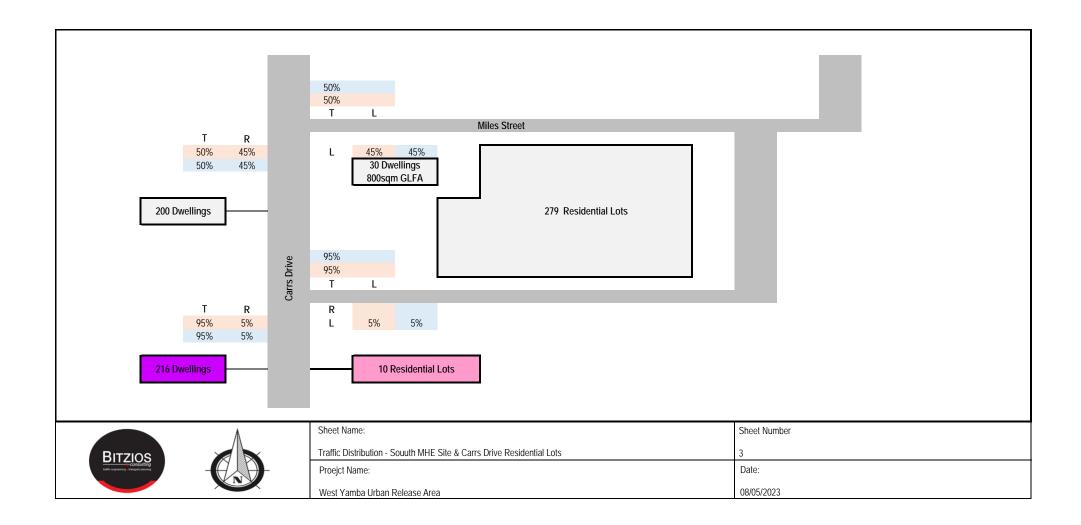
Roundabout Capacity Model: SIDRA Standard.

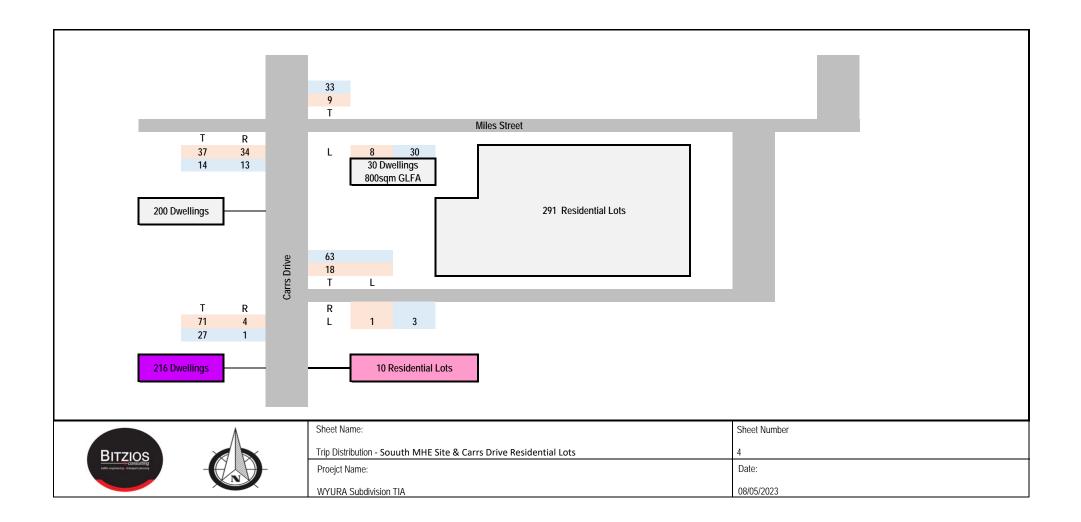
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.


Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.




Appendix E: Carrs Drive / Miles Street Traffic Volumes

